Predictive Analysis and Prognostic Approach of Diabetes Prediction with Machine Learning Techniques

被引:4
|
作者
Omana, J. [1 ]
Moorthi, M. [2 ]
机构
[1] Anna Univ, Prathyusha Engn Coll, Dept Comp Sci & Engn, Thiruvallur, India
[2] Saveetha Engn Coll, Dept Elect & Commun Engn, Chennai, Tamil Nadu, India
关键词
Prognostic modelling; Prediction; Automated modelling; Type 2 diabetes mellitus; Sparse data handling; Approximation; Machine learning algorithm; CLASSIFICATION; DISEASE;
D O I
10.1007/s11277-021-08274-w
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Medical experts indulge in numerous strategies for efficient and predictive measures to model the health status of patients and formulate the patterns that are formed in test results. Most patients would dream of their betterments of their health conditions and thus preventing the progression of any disease. When diabetics is considered in the model, or highly intervening methodology would be required for pre-diabetic individuals. Hidden Markov models have been modified into variant models to derive predictions that accurately produce expected results by investigating patterns of clinical observations from a detailed sample of patient's dataset. There are yet unanswered and concerning challenges to derive an absolute model for predicting diabetes. The datasets from which the patterns are derived from, still holds levels of in completeness, irregularity and obvious clinical interventions during the diagnosis. The Electronic Medical Records are not furnished with all requisite information in all conditions and scenarios. Due to these irregularities prediction has become highly challenging and there is increase in misclassification rate. Newton's Divide Difference Method (NDDM) is a conventional model for filling the irregularity in electronic datasets through divided differences. The classical approach considers a polynomial approximation approach, thus leading to Runge Phenomenon. If the interval between data fields id higher, severity of finding the irregularities is even higher. By using this type of technique it helps in improving the accuracy thereby bringing in high level prediction without any error and misclassification. In this technique proposed, a novel approximation technique is implemented using the Euclidean distance parameter over the NDDM approximation to predict the outcomes or risk of Type 2 Diabetes Mellitus among patients. Real world entities in CPCSSN are considered for this study and proposed method is tested. The proposed method filled the irregularity in the data components of EMR with better approximations and the quality of prediction has improved significantly.
引用
收藏
页码:465 / 478
页数:14
相关论文
共 50 条
  • [11] An Empirical Comparative Analysis Using Machine Learning Techniques for Liver Disease Prediction
    Alghobiri, Mohammed
    Khan, Hikmat Ullah
    Mahmood, Ahsan
    INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS, 2021, 16 (04)
  • [12] Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics
    Ota, Ryosaku
    Yamashita, Fumiyoshi
    JOURNAL OF CONTROLLED RELEASE, 2022, 352 : 961 - 969
  • [13] Mortality Prediction using Machine Learning Techniques: Comparative Analysis
    Verma, Akash
    Goyal, Shreya
    Thakur, Shridhar Kumar
    Gupta, Archit
    Gupta, Indrajeet
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 230 - 234
  • [14] Prediction and Analysis of Customer Complaints Using Machine Learning Techniques
    Alarifi, Ghadah
    Rahman, Mst Farjana
    Hossain, Md Shamim
    INTERNATIONAL JOURNAL OF E-BUSINESS RESEARCH, 2023, 19 (01)
  • [15] A Survey on Machine Learning Techniques for Heart Disease Prediction
    Priti Shinde
    Mahesh Sanghavi
    Tien Anh Tran
    SN Computer Science, 6 (4)
  • [16] Machine Learning Techniques and Breast Cancer Prediction: A Review
    Kaur, Gagandeep
    Gupta, Ruchika
    Hooda, Nistha
    Gupta, Nidhi Rani
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 125 (03) : 2537 - 2564
  • [17] Machine Learning Techniques for Diabetes Classification: A Comparative Study
    Mustafa, Hiri
    Mohamed, Chrayah
    Nabil, Ourdani
    Noura, Aknin
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 785 - 790
  • [18] Prediction of the direction of stock prices by machine learning techniques
    Kim, Yonghwan
    Song, Seongjoo
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (05) : 745 - 760
  • [19] A review on prediction of diabetes using machine learning and data mining classification techniques
    Pati, Abhilash
    Parhi, Manoranjan
    Pattanayak, Binod Kumar
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 41 (01) : 83 - 109
  • [20] The effect of Data Augmentation Using SMOTE: Diabetes Prediction by Machine Learning Techniques
    Al-Qerem, A.
    Ali, A. M.
    Alauthman, M.
    Al Khaldy, M.
    Aldweesh, A.
    PROCEEDINGS OF 2023 6TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE, AICCC 2023, 2023, : 13 - 20