Solvable base change

被引:1
作者
Clozel, Laurent [1 ]
Rajan, Conjeeveram S. [2 ]
机构
[1] Univ Paris Sud, Math, Bat 307, F-91405 Orsay, France
[2] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Bombay 400005, Maharashtra, India
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2021年 / 772卷
基金
美国国家科学基金会;
关键词
EULER PRODUCTS; REPRESENTATIONS; CLASSIFICATION;
D O I
10.1515/crelle-2020-0023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the image and the fibers for solvable base change.
引用
收藏
页码:147 / 174
页数:28
相关论文
共 50 条
  • [41] C * -DYNAMICAL SYSTEMS OF SOLVABLE LIE GROUPS
    Beltita, Ingrid
    Beltita, Daniel
    TRANSFORMATION GROUPS, 2018, 23 (03) : 589 - 629
  • [42] Solvable Lie and Leibniz superalgebras with a given nilradical
    Maria Camacho, Luisa
    Fernandez Barroso, Jose Manuel
    Maria Navarro, Rosa
    FORUM MATHEMATICUM, 2020, 32 (05) : 1271 - 1288
  • [43] On Solvable Lie Algebras of White Noise Operators
    Bock, Wolfgang
    Canama, Janeth
    Petalcorin, Gaudencio
    SYMMETRY-BASEL, 2022, 14 (11):
  • [44] Exactly solvable lattice Hamiltonians and gravitational anomalies
    Chen, Yu-An
    Hsin, Po-Shen
    SCIPOST PHYSICS, 2023, 14 (05):
  • [45] On some classes of solvable Leibniz algebras and their completeness
    Abdurasulov, K. K.
    Omirov, B. A.
    Rakhimov, I. S.
    JOURNAL OF ALGEBRA, 2022, 610 : 309 - 337
  • [46] Solvable extensions of the naturally graded quasi-filiform Leibniz algebra of second type L2
    Shabanskaya, A.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (11) : 5006 - 5031
  • [47] THE LAITINEN CONJECTURE FOR FINITE NON-SOLVABLE GROUPS
    Pawalowski, Krzysztof
    Sumi, Toshio
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (01) : 303 - 336
  • [48] On solvable Lie and Leibniz superalgebras with maximal codimension of nilradical
    Camacho, L. M.
    Navarro, R. M.
    Omirov, B. A.
    JOURNAL OF ALGEBRA, 2022, 591 : 500 - 522
  • [49] Abelian Ideals of Maximal Dimension for Solvable Lie Algebras
    Burde, Dietrich
    Ceballos, Manuel
    JOURNAL OF LIE THEORY, 2012, 22 (03) : 741 - 756
  • [50] Exactly solvable model for transmission line with artificial dispersion
    Shvartsburg, A. B.
    Artekha, S. N.
    Artekha, N. S.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (02)