Diamond Representations for Rank Two Semisimple Lie Algebras

被引:0
作者
Agrebaoui, Boujemaa [1 ]
Arnal, Didier [2 ]
Khlifi, Olfa [1 ]
机构
[1] Fac Sci Sfax, Dept Math, Sfax 3000, Tunisia
[2] Univ Bourgogne, CNRS, Inst Math Bourgogne, UFR Sci & Tech,UMR 5584, F-21078 Dijon, France
关键词
Rank two semisimple Lie algebras; representations; Young tableaux;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present work is a part of a larger program to construct explicit combinatorial models for the (indecomposable) regular representation of the nilpotent factor N in the Iwasawa decomposition of a semisimple Lie algebra g, using the restrictions to N of the simple finite dimensional modules of g. Such a description is given in Arnal, D., N. Bel Baraka, and N.-J. Wildberger, Diamond representations of sl(n), Annales Mathematiques Blaise Pascal 13 (2006), 381429 for the case g = sl(n). Here, we perform the same construction for the rank 2 semisimple Lie algebras (of type A(1) x A(1), A(2), C(2) and G(2)). The algebra C[N] of polynomial functions on N is a quotient, called the reduced shape algebra, of the shape algebra for g. Bases for the shape algebra are known, for instance the so-called semistandard Young tableaux give an explicit basis (see Alverson, L.-W., R.-G. Donnelly, S.-J. Lewis, M. McClard, R. Pervine, R.-A. Proctor, and N.-J. Wildberger, Distributive lattice defined for representations of rank two semisimple Lie algebras, SIAM J. Discrete Math. 23 (2008/09), no. 1, 527-559). We select among the semistandard tableaux, the so-called quasistandard ones which define a kind basis for the reduced shape algebra.
引用
收藏
页码:339 / 370
页数:32
相关论文
共 5 条
  • [1] DISTRIBUTIVE LATTICES DEFINED FOR REPRESENTATIONS OF RANK TWO SEMISIMPLE LIE ALGEBRAS
    Alverson, L. Wyatt, II
    Donnelly, Robert G.
    Lewis, Scott J.
    Mcclard, Marti
    Pervine, Robert
    Proctor, Robert A.
    Wildberger, N. J.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (01) : 527 - 559
  • [2] Arnal D., 2006, ANN MATH BLAISE PASC, V13, P381
  • [3] Fulton W., 2013, REPRESENTATION THEOR, V129
  • [4] Varadarajan V.S., 1984, Graduate Texts in Mathematics, V102
  • [5] Wildberger NJ, 2003, J LIE THEORY, V13, P155