The Transformer Fault Diagnosis Method Based on Improved Support Vector Machine

被引:0
作者
Huang Chao-Lin [1 ]
机构
[1] GuiZhou Tyre CO LTD, Tech Reform Dept, Guiyang 550008, Peoples R China
来源
INFORMATION ENGINEERING FOR MECHANICS AND MATERIALS RESEARCH | 2013年 / 422卷
关键词
support vector machine; fault diagnosis; particle swarm; classification;
D O I
10.4028/www.scientific.net/AMM.422.83
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Aiming at the fault diagnosis problem, the transformers fault diagnosis method is proposed based on improved support vector machine. The optimum parameters setting are got by the particle swarm optimization. The experimental results demonstrate that the proposed method of this paper has the good classification performance, the high reliability, effective and feasible.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 12 条
[1]  
Eberhart R., 1995, MHS 95, P39, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/MHS.1995.494215]
[2]  
Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P81, DOI 10.1109/CEC.2001.934374
[3]  
Hu Hongsheng, 2008, WCICA J, P1800
[4]  
Jun Guan, 2006, APPL RES COMPUTERS, V23, P2006
[5]  
Kennedy J., 1995, 1995 IEEE International Conference on Neural Networks Proceedings (Cat. No.95CH35828), P1942, DOI 10.1109/ICNN.1995.488968
[6]  
Lu Zhen-su, 2004, Acta Electronica Sinica, V32, P416
[7]   Condition Monitoring of Power Transformers using DGA and Fuzzy Logic [J].
Nemeth, Balint ;
Laboncz, Szilvia ;
Kiss, Istvan .
2009 IEEE ELECTRICAL INSULATION CONFERENCE, 2009, :373-+
[8]  
Poyhonen S., 2002, IEEE INT S INT CO
[9]   A probabilistic classifier for transformer dissolved gas analysis with a particle swarm optimizer [J].
Tang, W. H. ;
Goulermas, J. Y. ;
Wu, Q. H. ;
Richardson, Z. J. .
IEEE TRANSACTIONS ON POWER DELIVERY, 2008, 23 (02) :751-759
[10]  
VAPNIK V, 1995, NATURE STAT LEARN TH