A Clustering Algorithm Based on Variance-Similarity

被引:0
作者
Li, Zhendong [1 ]
Li, Fei [2 ]
机构
[1] Lanzhou Univ Finance & Econ, Sch Informat Engn, Lanzhou, Peoples R China
[2] Lanzhou Univ Finance & Econ, Sch Stat, Lanzhou, Peoples R China
来源
MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3 | 2013年 / 333-335卷
关键词
data mining; clustering algorithm; attribute values; Variance-Similarity;
D O I
10.4028/www.scientific.net/AMM.333-335.1306
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Clustering algorithms, like K-means Algorithm, use distances in attribute space to cluster data. However the computation of distances in attribute space influences the accuracy. So innovatively, Variance-Similarity clustering algorithm defines similarity as a function of the attribute variance, and clusters data by the comparison of similarities. In computer simulation, the comparison of Variance-Similarity Algorithm and K-means Algorithm on UCI data sets presents that Variance-Similarity Algorithm has a better clustering accuracy than K-means Algorithm.
引用
收藏
页码:1306 / +
页数:2
相关论文
共 6 条
[1]  
DENEUBOURG JL, 1990, ANIMALS ANIMATS
[2]  
Gao Shang, 2004, COMPUTER ENG APPL
[3]  
Liang X, 2006, DATA MINING ALGORITH
[4]  
Liu Ingming, 2005, SYSTEM ENG THEORY PR
[5]  
Lumer E. D., 1994, ANIMALS ANIMATS
[6]  
Zhou Xinhua, 2005, CONTROL ENG