Effect of Contamination towards Proton Exchange Membrane Fuel Cell Performance: A Review on Experimental and Numerical Works

被引:3
|
作者
Rodin, Muhammad bin Lebai [1 ]
Hassan, Saiful Hasmady bin Abu [1 ]
Zakaria, Zulfirdaus [2 ]
机构
[1] Univ Tenaga Nas, Coll Engn, Kajang, Malaysia
[2] Univ Tenaga Nas, Inst Sustainable Energy, Kajang, Malaysia
来源
JURNAL KEJURUTERAAN | 2020年 / 32卷 / 04期
关键词
Contamination; Fuel Cell; PEMFC; HYDROGEN-PRODUCTION; CO2; EMISSIONS; URBANIZATION; REFORMER; ENERGY;
D O I
10.17576/jkukm-2020-32(4)-03
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Proton exchange membrane fuel cell (PEMFC) is a well-known energy converter that has low greenhouse gases (GHG) emission, low operating temperatures, and high power density. PEMFC operates on hydrogen (H-2) as fuel, and oxygen (O-2) as oxidant. Inverse electrolysis occurs between the oxidant and the fuel. Then, water (H2O) forms as their by product. Practically, O-2 is supplied from the free air which contains not only oxygen but also other gases such as sulphur dioxide (SO2), and nitrogen oxides (NOx). Meanwhile, the H-2 fuel may contain traces of carbon monoxide (CO) as a result from its previous reforming process. This makes PEMFC susceptible to disruption from these particles. These contaminating gases from the free air occupy the reacting sites originally meant for O-2 and react with hydrogen ions instead of oxygen ions. While minute CO traces from the fuel occupies the reacting sites for H a and react with oxygen ions instead of hydrogen ions. Consecutively, the energy output from the PEMFC will be short from its expected numerical value hence a less efficient PEMFC. Hence, this paper reviews recent research on PEMFC under the impact of cathode and anode side contaminants via experimental and numerical works. It is found that CO has more effect to the cell compared to CO2. SO2 and CO contaminates the catalyst layer while NOx does not. In addition, PtRu/C shows more resistance to contamination compared to traditional Pt/C. This comparative review serves to find out potentials in improving PEMFC operation and solving its mitigation strategies.
引用
收藏
页码:21 / 27
页数:7
相关论文
共 50 条
  • [31] Modified sulfonated polyphenylsulfone proton exchange membrane with enhanced fuel cell performance: A review
    Nor, Nor Azureen Mohamad
    Mohamed, Mohamad Azuwa
    Jaafar, Juhana
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 116 : 32 - 59
  • [32] Effect of Catalyst Ink Properties on the Performance of Proton Exchange Membrane Fuel Cell and Water Electrolyzer: A Mini Review
    Choi, Won-Jong
    Kang, Inku
    Yu, Duk Man
    Yoon, Sang Jun
    So, Soonyong
    Oh, Keun-Hwan
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024,
  • [33] Ecological Performance of an Irreversible Proton Exchange Membrane Fuel Cell
    Li, Changjie
    Xu, Bing
    Ma, Zheshu
    SCIENCE OF ADVANCED MATERIALS, 2020, 12 (08) : 1225 - 1235
  • [34] Effect of interdigitated leaf channel design bipolar plate on the performance of proton exchange membrane fuel cell
    Srinivasa Reddy Badduri
    G. Naga Srinivasulu
    S. Srinivasa Rao
    V. Venkateswarlu
    Ch. Karunakar
    K. Sridhar
    A. V. S. Ramanuja Charyulu
    Chemical Papers, 2023, 77 : 1095 - 1106
  • [35] Effect of interdigitated leaf channel design bipolar plate on the performance of proton exchange membrane fuel cell
    Badduri, Srinivasa Reddy
    Srinivasulu, G. Naga
    Rao, S. Srinivasa
    Venkateswarlu, V.
    Karunakar, Ch
    Sridhar, K.
    Charyulu, A. V. S. Ramanuja
    CHEMICAL PAPERS, 2023, 77 (02) : 1095 - 1106
  • [36] Numerical modeling of the proton exchange membrane fuel cell for thermal management
    Yu, Sangseok
    Jung, Dohoy
    Assanis, Dennis N.
    Proceedings of the 4th International Conference on Fuel Cell Science, Engineering, and Technology, Pts A and B, 2006, : 117 - 126
  • [37] Numerical predictions of transport phenomena in a proton exchange membrane fuel cell
    Lin, Yongming
    Beale, Steven B.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2005, 2 (04): : 213 - 218
  • [38] Numerical Simulation of Water Transport in a Proton Exchange Membrane Fuel Cell Flow Channel
    Shen, Jun
    Liu, Zhichun
    Liu, Fan
    Liu, Wei
    ENERGIES, 2018, 11 (07):
  • [39] Numerical investigation of obstacle's effect on the performance of proton-exchange membrane fuel cell: studying the shape of obstacles
    Ebrahimzadeh, A. A.
    Khazaee, I
    Fasihfar, A.
    HELIYON, 2019, 5 (05)
  • [40] Numerical study of Tesla valve flow field on proton exchange membrane fuel cell performance
    Guo, Hui
    Tian, Shaopeng
    Wang, Long
    Xiao, Congda
    Yang, Shujin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1573 - 1583