The geography of semidiurnal mode-1 internal-tide energy loss

被引:69
|
作者
Kelly, S. M. [1 ,2 ]
Jones, N. L. [1 ,2 ]
Nash, J. D. [3 ]
Waterhouse, A. F. [4 ]
机构
[1] Univ Western Australia, Oceans Inst, Crawley, WA, Australia
[2] Univ Western Australia, Sch Environm Syst Engn, Crawley, WA, Australia
[3] Oregon State Univ, Coll Ocean & Atmospher Sci, Covallis, OR USA
[4] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
tides; internal tides; physical oceanography; energy dissipation; internal waves; WAVE PROPAGATION; GLOBAL PATTERNS; KAENA RIDGE; DEEP-OCEAN; GENERATION; TOPOGRAPHY; SCATTERING; BREAKING; SURFACE;
D O I
10.1002/grl.50872
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The semidiurnal mode-1 internal tide receives 0.1-0.3 TW from the surface tide and is capable of propagating across ocean basins. The ultimate fate of mode-1 energy after long-distance propagation is poorly constrained by existing observations and numerical simulations. Here, global results from a two-dimensional semi-analytical model indicate that topographic scattering is inefficient at most locations deeper than 2500 m. Next, results from a one-dimensional linear model with realistic topography and stratification create a map of mode-1 scattering coefficients along the continental margins. On average, mode-1 internal tides lose about 60% of their energy upon impacting the continental margins: 20% transmits onto the continental shelf, 40% scatters to higher modes, and 40% reflects back to the ocean interior. These analyses indicate that the majority of mode-1 energy is likely lost at large topographic features (e.g., continental slopes, seamounts, and mid-ocean ridges), where it may drive elevated turbulent mixing.
引用
收藏
页码:4689 / 4693
页数:5
相关论文
共 19 条
  • [1] Development of the Yearly Mode-1 M2 Internal Tide Model in 2019
    Zhao, Zhongxiang
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2022, 39 (04) : 463 - 478
  • [2] Internal-tide energy over topography
    Kelly, S. M.
    Nash, J. D.
    Kunze, E.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2010, 115
  • [3] Global Dynamics of the Stationary M2 Mode-1 Internal Tide
    Kelly, Samuel M.
    Waterhouse, Amy F.
    Savage, Anna C.
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (11)
  • [4] The Global Mode-1 S2 Internal Tide
    Zhao, Zhongxiang
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2017, 122 (11) : 8794 - 8812
  • [5] Scattering of mode-1 M2 internal tide in the South China Sea
    Chen, Wanqian
    Li, Bingtian
    Gao, Jinpeng
    Meng, Xiangqian
    Lv, Jing
    Ge, Yunxiu
    Wang, Yining
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2024, 206
  • [6] On the predictability of mode-1 internal tides
    Dushaw, Brian D.
    Worcester, Peter F.
    Dzieciuch, Matthew A.
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2011, 58 (06) : 677 - 698
  • [7] Energetics of mode-1 internal waves interacting with topographic ridges of varying height and slope
    Klema, Matthew R.
    Venayagamoorthy, Subhas K.
    JOURNAL OF FLUID MECHANICS, 2024, 1000
  • [8] Internal Tides FromSWOT: A75-Day Instantaneous Mode-1 M2 Internal Tide Model
    Zhao, Zhongxiang
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2024, 129 (12)
  • [9] Resonant coupling of mode-1 and mode-2 internal waves by topography
    Liu, Zihua
    Grimshaw, Roger
    Johnson, Edward
    JOURNAL OF FLUID MECHANICS, 2021, 908
  • [10] Mode-1 internal tides in the western North Atlantic Ocean
    Dushaw, BD
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2006, 53 (03) : 449 - 473