Automatic Detection and Segmentation of Ischemic Lesions in Computed Tomography Images of Stroke Patients

被引:7
作者
Vos, Pieter C. [1 ]
Biesbroek, J. Matthijs
Weaver, Nick A.
Velthuis, Birgitta K.
Viergever, Max A. [1 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, NL-3584 CX Utrecht, Netherlands
来源
MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS | 2013年 / 8670卷
关键词
BRAIN IMAGES; VALIDATION;
D O I
10.1117/12.2008074
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stroke is the third most common cause of death in developed countries. Clinical trials are currently investigating whether advanced Computed Tomography can be of benefit for diagnosing stroke at the acute phase. These trials are based on large patients cohorts that need to be manually annotated to obtain a reference standard of tissue loss at follow-up, resulting in extensive workload for the radiologists. Therefore, there is a demand for accurate and reliable automatic lesion segmentation methods. This paper presents a novel method for the automatic detection and segmentation of ischemic lesions in CT images. The method consists of multiple sequential stages. In the initial stage, pixel classification is performed using a naive Bayes classifier in combination with a tissue homogeneity algorithm in order to localize ischemic lesion candidates. In the next stage, the candidates are segmented using a marching cubes algorithm. Regional statistical analysis is used to extract features based on local information as well as contextual information from the contra-lateral hemisphere. Finally, the extracted features are summarized into a likelihood of ischemia by a supervised classifier. An area under the Receiver Operating Characteristic curve of 0.91 was obtained for the identification of ischemic lesions. The method performance on lesion segmentation reached a Dice similarity coeficient (DSC) of 0.74 +/- 0.09, whereas an independent human observer obtained a DSC of 0.79 +/- 0.11 in the same dataset. The experiments showed that it is feasible to automatically detect and segment ischemic lesions in CT images, obtaining a comparable performance as human observers.
引用
收藏
页数:6
相关论文
共 12 条
[1]   Generalized overlap measures for evaluation and validation in medical image analysis [J].
Crum, William R. ;
Camara, Oscar ;
Hill, Derek L. G. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (11) :1451-1461
[2]   Atlas-based segmentation of pathological MR brain images using a model of lesion growth [J].
Cuadra, MB ;
Pollo, C ;
Bardera, A ;
Cuisenaire, O ;
Villemure, JG ;
Thiran, JP .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (10) :1301-1314
[3]   Cost of disorders of the brain in Europe 2010 [J].
Gustavsson, Anders ;
Svensson, Mikael ;
Jacobi, Frank ;
Allgulander, Christer ;
Alonso, Jordi ;
Beghi, Ettore ;
Dodel, Richard ;
Ekman, Mattias ;
Faravelli, Carlo ;
Fratiglioni, Laura ;
Gannon, Brenda ;
Jones, David Hilton ;
Jennum, Poul ;
Jordanova, Albena ;
Jonsson, Linus ;
Karampampa, Korinna ;
Knapp, Martin ;
Kobelt, Gisela ;
Kurth, Tobias ;
Lieb, Roselind ;
Linde, Mattias ;
Ljungcrantz, Christina ;
Maercker, Andreas ;
Melin, Beatrice ;
Moscarelli, Massimo ;
Musayev, Amir ;
Norwood, Fiona ;
Preisig, Martin ;
Pugliatti, Maura ;
Rehm, Juergen ;
Salvador-Carulla, Luis ;
Schlehofer, Brigitte ;
Simon, Roland ;
Steinhausen, Hans-Christoph ;
Stovner, Lars Jacob ;
Vallat, Jean-Michel ;
Van den Bergh, Peter ;
van Os, Jim ;
Vos, Pieter ;
Xu, Weili ;
Wittchen, Hans-Ulrich ;
Jonsson, Bengt ;
Olesen, Jes .
EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2011, 21 (10) :718-779
[4]  
Kuijf H. J., 2013, P SOC PHOTO-OPT INS, V8673
[5]   TISSUE-PLASMINOGEN ACTIVATOR FOR ACUTE ISCHEMIC STROKE [J].
MARLER, JR ;
BROTT, T ;
BRODERICK, J ;
KOTHARI, R ;
ODONOGHUE, M ;
BARSAN, W ;
TOMSICK, T ;
SPILKER, J ;
MILLER, R ;
SAUERBECK, L ;
JARRELL, J ;
KELLY, J ;
PERKINS, T ;
MCDONALD, T ;
RORICK, M ;
HICKEY, C ;
ARMITAGE, J ;
PERRY, C ;
THALINGER, K ;
RHUDE, R ;
SCHILL, J ;
BECKER, PS ;
HEATH, RS ;
ADAMS, D ;
REED, R ;
KLEI, M ;
HUGHES, S ;
ANTHONY, J ;
BAUDENDISTEL, D ;
ZADICOFF, C ;
RYMER, M ;
BETTINGER, I ;
LAUBINGER, P ;
SCHMERLER, M ;
MEIROSE, G ;
LYDEN, P ;
RAPP, K ;
BABCOCK, T ;
DAUM, P ;
PERSONA, D ;
BRODY, M ;
JACKSON, C ;
LEWIS, S ;
LISS, J ;
MAHDAVI, Z ;
ROTHROCK, J ;
TOM, T ;
ZWEIFLER, R ;
DUNFORD, J ;
ZIVIN, J .
NEW ENGLAND JOURNAL OF MEDICINE, 1995, 333 (24) :1581-1587
[6]  
Organization W. H., 2004, WORLD HLTH REP ATL H
[7]   VBM lesion detection depends on the normalization template: a study using simulated atrophy [J].
Shen, Shan ;
Szameitat, Andre J. ;
Sterr, Annette .
MAGNETIC RESONANCE IMAGING, 2007, 25 (10) :1385-1396
[8]   An improved lesion detection approach based on similarity measurement between fuzzy intensity segmentation and spatial probability maps [J].
Shen, Shan ;
Szameitat, Andre J. ;
Sterr, Annette .
MAGNETIC RESONANCE IMAGING, 2010, 28 (02) :245-254
[9]   Feature-based statistical analysis of structural MR data for automatic detection of Focal Cortical Dysplastic lesions [J].
Srivastava, S ;
Maes, F ;
Vandermeulen, D ;
Van Paesschen, W ;
Dupont, P ;
Suetens, P .
NEUROIMAGE, 2005, 27 (02) :253-266
[10]   Identifying lesions on structural brain images - Validation of the method and application to neuropsychological patients [J].
Stamatakis, EA ;
Tyler, LK .
BRAIN AND LANGUAGE, 2005, 94 (02) :167-177