An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques

被引:42
作者
Abgrall, R. [1 ,2 ,3 ]
Beaugendre, H. [1 ,2 ,3 ]
Dobrzynski, C. [1 ,2 ,3 ]
机构
[1] Univ Bordeaux, IMB, UMR 5251, F-33400 Talence, France
[2] CNRS, IMB, UMR 5251, F-33400 Talence, France
[3] INRIA, F-33400 Talence, France
关键词
Penalization technique; Unstructured mesh; Level set; Anisotropic mesh; Mesh adaptation; Embedded method; Navier-Stokes equations; FLUID; SCHEMES; SOLVER; CFD;
D O I
10.1016/j.jcp.2013.08.052
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The interest on embedded boundary methods increases in Computational Fluid Dynamics (CFD) because they simplify the mesh generation problem in the case of the Navier-Stokes equations. The same simplifications occur for the simulation of multi-physics flows, the coupling of fluid-solid interactions in situation of large motions or deformations, to give a few examples. Nevertheless an accurate treatment of the wall boundary conditions remains an issue of the method. In this work, the wall boundary conditions are easily taken into account through a penalization technique, and the accuracy of the method is recovered using mesh adaptation, thanks to the potential of unstructured meshes. Several classical examples are used to demonstrate that claim. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 101
页数:19
相关论文
共 40 条
[1]   Multi-dimensional continuous metric for mesh adaptation [J].
Alauzet, Frederic ;
Loseille, Adrien ;
Dervieux, Alain ;
Frey, Pascal .
PROCEEDINGS OF THE 15TH INTERNATIONAL MESHING ROUNDTABLE, 2006, :191-+
[2]   A penalization method to take into account obstacles in incompressible viscous flows [J].
Angot, P ;
Bruneau, CH ;
Fabrie, P .
NUMERISCHE MATHEMATIK, 1999, 81 (04) :497-520
[3]  
[Anonymous], 1996, LEVEL SET METHODS FA
[4]   COMPUTATIONAL METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES [J].
BENSON, DJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 99 (2-3) :235-394
[5]   A high-resolution penalization method for large Mach number flows in the presence of obstacles [J].
Boiron, O. ;
Chiavassa, G. ;
Donat, R. .
COMPUTERS & FLUIDS, 2009, 38 (03) :703-714
[6]  
Bossen F.J., 1996, Proceedings of the International Meshing Roundtable, page, P6376
[7]  
Braconnier B., 2006, P PMAA 2006 RENN SEP
[8]  
Bui C., 2011, INT J NUMER METHODS
[9]   An immersed boundary method for complex incompressible flows [J].
Choi, Jung-Il ;
Oberoi, Roshan C. ;
Edwards, Jack R. ;
Rosati, Jacky A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) :757-784
[10]   A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies [J].
Coquerelle, M. ;
Cottet, G. -H. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (21) :9121-9137