Empirical Likelihood Confidence Intervals for the Differences of Quantiles with Missing Data

被引:3
作者
Qin, Yong-song [1 ]
Qian, Yong-jiang [1 ]
机构
[1] Guangxi Normal Univ, Sch Math Sci, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Empirical likelihood; confidence Interval; quantile; missing data; imputation; LINEAR-MODELS; INFERENCE; IMPUTATION;
D O I
10.1007/s10255-006-6116-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that there are two nonparametric populations x and y with missing data on both of them. We are interested in constructing confidence intervals on the quantile differences of x and y. Random imputation is used. Empirical likelihood confidence intervals on the differences are constructed.
引用
收藏
页码:105 / 116
页数:12
相关论文
共 20 条
[1]  
Chen J, 2000, STAT SINICA, V10, P1153
[2]  
Chen JH, 2007, STAT SINICA, V17, P1047
[3]   SMOOTHED EMPIRICAL LIKELIHOOD CONFIDENCE-INTERVALS FOR QUANTILES [J].
CHEN, SX ;
HALL, P .
ANNALS OF STATISTICS, 1993, 21 (03) :1166-1181
[4]  
Chen YZ, 1999, STAT SINICA, V9, P361
[5]   EMPIRICAL LIKELIHOOD IS BARTLETT-CORRECTABLE [J].
DICICCIO, T ;
HALL, P ;
ROMANO, J .
ANNALS OF STATISTICS, 1991, 19 (02) :1053-1061
[6]  
Hall Peter., 1988, Austral. J. Statist., V30, P179, DOI [10.1111/j.1467-842X.1988.tb00474.x, 10.1111/j.1467-842X.1988.tb00474]
[7]   A NEW ESTIMATION THEORY FOR SAMPLE SURVEYS [J].
HARTLEY, HO ;
RAO, JNK .
BIOMETRIKA, 1968, 55 (03) :547-&
[8]   2-SAMPLE EMPIRICAL LIKELIHOOD METHOD [J].
JING, BY .
STATISTICS & PROBABILITY LETTERS, 1995, 24 (04) :315-319
[9]  
Little R.J., 2019, Statistical Analysis with Missing Data, V793
[10]   EMPIRICAL LIKELIHOOD RATIO CONFIDENCE-REGIONS [J].
OWEN, A .
ANNALS OF STATISTICS, 1990, 18 (01) :90-120