A Novel PSO-DE-Based Hybrid Algorithm for Global Optimization

被引:0
作者
Niu, Ben [1 ]
Li, Li [1 ]
机构
[1] Shenzhen Univ, Sch Management, Shenzhen 518060, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE | 2008年 / 5227卷
关键词
Particle swarm optimization; differential evolution; global optimization;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new hybrid global optimization algorithm PSODE combining particle swarm optimization (PSO) with differential evolution (DE). PSODE is a type of parallel algorithm, in which PSO and DE are executed in parallel to enhance the population with frequent information sharing. To demonstrate the effectiveness of the proposed algorithm, four benchmark functions are performed, and the performance of the proposed algorithm is compared to PSO and DE to demonstrate its superiority.
引用
收藏
页码:156 / 163
页数:8
相关论文
共 8 条
  • [1] [Anonymous], 2001, SWARM INTELL-US
  • [2] [Anonymous], 1995, P 1995 IEEE INT C NE
  • [3] Eberhart R., 1995, MHS 95 P 6 INT S MIC, DOI DOI 10.1109/MHS.1995.494215
  • [4] HENDTLASS T, 2001, LECT NOTES COMPUTER, V2070, P11
  • [5] MCPSO: A multi-swarm cooperative particle swarm optimizer
    Niu, Ben
    Zhu, Yunlong
    He, Xiaoxian
    Wu, Henry
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (02) : 1050 - 1062
  • [6] Price K., 1999, New ideas in optimization, P79
  • [7] A modified particle swarm optimizer
    Shi, YH
    Eberhart, R
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, : 69 - 73
  • [8] Zhang WJ, 2003, IEEE SYS MAN CYBERN, P3816