Atomic layer deposition of TiO2 on negative electrode for lithium ion batteries

被引:31
作者
Lee, Meng-Lun [1 ]
Su, Chung-Yi [1 ]
Lin, Yu-Hung [1 ]
Liao, Shih-Chieh [2 ]
Chen, Jin-Ming [2 ]
Perng, Tsong-Pyng [1 ]
Yeh, Jien-Wei [1 ]
Shih, Han C. [1 ,3 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
[2] Ind Technol Res Inst, Chutung 31040, Taiwan
[3] Chinese Culture Univ, Inst Nanomat, Taipei 11114, Taiwan
关键词
Atomic layer deposition (ALD); Lithium ion battery; Anode; Graphite; NATURAL GRAPHITE; ANODE MATERIALS; ELECTROCHEMICAL IMPEDANCE; SURFACE-CHEMISTRY; SOLID-ELECTROLYTE; INTERCALATION; PERFORMANCE; MECHANISMS; FAILURE;
D O I
10.1016/j.jpowsour.2012.12.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic layer deposition (ALD) technology consisting of periodically repeated series of self-limited surface reactions is a CVD technique for the well-controlled deposition of inorganic layers with thickness in the nanometer scale which has been widely used in the semiconductor industry. In this study, a novel process to fabricate TiO2 nano-layer with high uniformity by ALD on the graphite negative electrode of lithium battery is reported. We found that under accurate thickness control, a TiO2 plated graphite electrode shows better performance in cycle life, compared with the pristine graphite. Electrochemical impedance spectroscopy (EIS) results showed that after 60 cycles, the cell resistance of the TiO2 plated electrode decreased, while that of normal graphite electrode increased significantly. The enhanced performance of the electrode may be attributed to the TiO2 plating, which suppressed the increase of resistance during the prolonged cycle. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:410 / 416
页数:7
相关论文
共 41 条
[1]  
[Anonymous], 1995, HDB XRAY PHOTOELECTR
[2]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[3]   Failure and stabilization mechanisms of graphite electrodes [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Schechter, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (12) :2195-2206
[4]   FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
WINTER, M ;
YANG, J ;
BIBERACHER, W .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :228-231
[5]   Kinetic characterization of the electrochemical intercalation of lithium ions into graphite electrodes [J].
Chang, YC ;
Jong, JH ;
Fey, GTK .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (06) :2033-2038
[6]   TiO2 atomic layer deposition on ZrO2 particles using alternating exposures of TiCl4 and H2O [J].
Ferguson, JD ;
Yoder, AR ;
Weimer, AW ;
George, SM .
APPLIED SURFACE SCIENCE, 2004, 226 (04) :393-404
[7]   Poly (acrylonitrile) encapsulated graphite as anode materials for lithium ion batteries [J].
Guo, KK ;
Pan, QM ;
Fang, SB .
JOURNAL OF POWER SOURCES, 2002, 111 (02) :350-356
[8]   Surface film formation on graphite negative electrode in lithium-ion batteries [J].
Jeong, SK ;
Inaba, M ;
Abe, T ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (09) :A989-A993
[9]   Characteristics of surface films formed at a mesocarbon microbead electrode in a Li-ion battery [J].
Kim, JS ;
Park, YT .
JOURNAL OF POWER SOURCES, 2000, 91 (02) :172-176
[10]   Surface chemistry study of LiCoO2 coated with alumina [J].
Kosova, Nina ;
Devyatkina, Evgeniya ;
Slobodyuk, Arseny ;
Kaichev, Vasily .
SOLID STATE IONICS, 2008, 179 (27-32) :1745-1749