Predicted MicroRNAs for Mammalian Circadian Rhythms

被引:21
作者
Figueredo, Diego de Siqueira [1 ]
Barbosa, Mayara Rodrigues [1 ]
Goes Gitai, Daniel Leite [2 ]
de Andrade, Tiago Gomes [1 ]
机构
[1] Univ Fed Alagoas, Lab Mol Biol & Gene Express Anal, Campus Arapiraca, Alagoas, Brazil
[2] Univ Fed Alagoas, Lab Cellular & Mol Biol, Maceio, Alagoas, Brazil
关键词
posttranscriptional regulation; miR; bioinformatics; mammals; clock genes; CLOCK GENE-EXPRESSION; PPAR-GAMMA; ADIPOCYTE DIFFERENTIATION; TRANSCRIPTION FACTOR; MONONUCLEAR; LEUKOCYTES; MIRNA; IDENTIFICATION; ADIPOGENESIS; CONTRIBUTES;
D O I
10.1177/0748730413476827
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is little evidence for the involvement of microRNAs (miRs) in the regulation of circadian rhythms, despite the potential relevance of these elements in the posttranscriptional regulation of the clock machinery. The present work aimed to identify miRs targeting circadian genes through a predictive analysis of conserved miRs in mammals. Besides 23 miRs previously associated with circadian rhythms, we found a number of interesting candidate genes, equally predicted by the 3 software programs used, including miR-9, miR-24, miR25, miR-26, miR-27, miR-29, miR-93, miR-211, miR-302, and miR-346. Moreover, several miRs are predicted to be regulated by circadian transcription factors, such as CLOCK/BMAL, DEC2, and REV-ERBalpha. Using real-time PCR we demonstrated that the selected candidate miR-27b showed a daily variation in human leukocytes. This study presents predicted feedback loops for mammalian molecular clock and the first description of an miR with in vivo daily variation in humans.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 50 条
[31]   Circadian rhythms in septic shock patients [J].
Gunnar Lachmann ;
Bharath Ananthasubramaniam ;
Viktor A. Wünsch ;
Lara-Marie Scherfig ;
Clarissa von Haefen ;
Cornelia Knaak ;
Andreas Edel ;
Lukas Ehlen ;
Barbara Koller ;
Anton Goldmann ;
Hanspeter Herzel ;
Achim Kramer ;
Claudia Spies .
Annals of Intensive Care, 11
[32]   Interacting influences of aging and Alzheimer's disease on circadian rhythms [J].
Duncan, Marilyn J. .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2020, 51 (01) :310-325
[33]   Evidence for the adaptive significance of circadian rhythms [J].
Yerushalmi, Shai ;
Green, Rachel M. .
ECOLOGY LETTERS, 2009, 12 (09) :970-981
[34]   Interaction between circadian rhythms and stress [J].
Koch, C. E. ;
Leinweber, B. ;
Drengberg, B. C. ;
Blaum, C. ;
Oster, H. .
NEUROBIOLOGY OF STRESS, 2017, 6 :57-67
[35]   Circadian rhythms in adaptive immunity and vaccination [J].
Cermakian, Nicolas ;
Stegeman, Sophia K. ;
Tekade, Kimaya ;
Labrecque, Nathalie .
SEMINARS IN IMMUNOPATHOLOGY, 2022, 44 (02) :193-207
[36]   Glucocorticoid circadian rhythms in immune function [J].
Olejniczak, Iwona ;
Oster, Henrik ;
Ray, David W. .
SEMINARS IN IMMUNOPATHOLOGY, 2022, 44 (02) :153-163
[37]   Circadian rhythms in the pathogenesis of gastrointestinal diseases [J].
Codoner-Franch, Pilar ;
Gombert, Marie .
WORLD JOURNAL OF GASTROENTEROLOGY, 2018, 24 (38) :4297-4303
[38]   The Role of Circadian Rhythms in Aging and ADHD [J].
Popa-Wagner, A. .
FORTSCHRITTE DER NEUROLOGIE PSYCHIATRIE, 2016, 84 :S77-S79
[39]   Genetic and molecular analysis of circadian rhythms [J].
Dunlap, JC .
ANNUAL REVIEW OF GENETICS, 1996, 30 :579-601
[40]   The impact of circadian rhythms on retinal immunity [J].
Ren, He ;
Yuan, Yilin ;
Zhang, Danlei ;
Xing, Yiqiao ;
Chen, Zhen .
CHRONOBIOLOGY INTERNATIONAL, 2025, 42 (02) :198-212