On the algebraic independence of values of generalized hypergeometric functions

被引:5
作者
Gorelov, V. A. [1 ]
机构
[1] Moscow Power Engn Inst, Moscow, Russia
关键词
generalized hypergeometric function; linear differential equation; algebraic independence of solutions; Galois group; differential field; transcendence degree; contiguous functions;
D O I
10.1134/S0001434613070080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider hypergeometric functions satisfying homogeneous linear differential equations of arbitrary order. We prove general theorems on the algebraic independence of the solutions of a set of hypergeometric equations as well as of the values of these solutions at algebraic points. The conditions of most theorems are necessary and sufficient.
引用
收藏
页码:82 / 95
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 1953, HIGHER TRANSCENDENTA
[2]   SIEGEL NORMALITY [J].
BEUKERS, F ;
BROWNAWELL, WD ;
HECKMAN, G .
ANNALS OF MATHEMATICS, 1988, 127 (02) :279-308
[3]  
Beukers F., 1988, NEW ADV TRANSCENDENC, P56
[4]   Algebraic independence of values of hypergeometric E-functions [J].
Cherepnev, MA .
MATHEMATICAL NOTES, 1995, 57 (5-6) :630-642
[5]   On algebraic identities between generalized hypergeometric functions [J].
Gorelov, V. A. .
MATHEMATICAL NOTES, 2010, 88 (3-4) :487-491
[6]  
INCE EL, 1927, ORDINARY DIFFERENTIA
[7]  
Kamke E., 1959, GEWOHNLICHE DIFFEREN
[8]  
Kaplansky I., 1957, INTRO DIFFERENTIAL A
[9]  
Katz N.M., 1990, ANN MATH STUDIES, V124
[10]   ALGEBRAIC GROUPS AND ALGEBRAIC DEPENDENCE [J].
KOLCHIN, ER .
AMERICAN JOURNAL OF MATHEMATICS, 1968, 90 (04) :1151-&