The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer

被引:25
作者
Dwyer, TM
Mortl, S
Kemter, K
Bacher, A
Fauq, A
Frerman, FE [1 ]
机构
[1] Univ Colorado, Sch Med, Dept Pediat, Denver, CO 80262 USA
[2] Univ Colorado, Sch Med, Program Cell & Dev Biol, Denver, CO 80262 USA
[3] Mayo Clin, Jacksonville, FL 32224 USA
[4] Tech Univ Munich, Lehrstuhl Organ Chem & Biochem, D-8000 Munich, Germany
关键词
D O I
10.1021/bi9903906
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electron-transfer flavoprotein (ETF) serves as an intermediate electron carrier between primary flavoprotein dehydrogenases and terminal respiratory chains in mitochondria and prokaryotic cells. The three-dimensional structures of human and Paracoccus denitrificans ETFs determined by X-ray crystallography indicate that the 4'-hydroxyl of the ribityl side chain of FAD is hydrogen bonded to N(1) of the flavin ring. We have substituted 4'-deoxy-FAD for the native FAD and investigated the analog-containing ETF to determine the role of this rare intra-cofactor hydrogen bond. The binding constants for 4'-deoxy-FAD and FAD with the apoprotein are very similar, and the energy of binding differs by only 2 kJ/mol. The overall two-electron oxidation-reduction potential of 4'-deoxy-FAD in solution is identical to that of FAD. However, the potential of the oxidized/semiquinone couple of the ETF containing 4'-deoxy-FAD is 0.116 V less than the oxidized/semiquinone couple of the native protein. These data suggest that the 4'-hydoxyl-N(1) hydrogen bond stabilizes the anionic semiquinone in which negative charge is delocalized over the N(1)-C(2)O region. Transfer of the second electron to 4'-deoxy-FAD reconstituted ETF is extremely slow, and it was very difficult to achieve complete reduction of the flavin semiquinone to the hydroquinone. The turnover of medium chain acyl-CoA dehydrogenase with native ETF and ETF containing the 4'-deoxy analogue was essentially identical when the reduced ETF was recycled by reduction of 2,6-dichlorophenolindophenol. However, the steady-state turnover of the dehydrogenase with 4'-deoxy-FAD was only 23% of the turnover with native ETF when ETF semiquinone formation was assayed directly under anaerobic conditions. This is consistent with the decreased potential of the oxidized semiquinone couple of the analog-containing ETF. ETF containing 4'-deoxy-FAD neither donates to nor accepts electrons from electron-transfer flavoprotein ubiquinone oxidoreductase (ETF-QO) at significant rates (less than or equal to 0.5% the wild-type rates). These results indicate that the 4'-hydroxyl-N(1) hydrogen bond plays a major role in the stabilization of the anionic semiquinone and anionic hydroquinone oxidation states of ETF and that this hydrogen bond may provide a pathway for electron transfer between the ETF flavin and the flavin of ETF-QO.
引用
收藏
页码:9735 / 9745
页数:11
相关论文
共 68 条