Current methods for fabricating 3D cardiac engineered constructs

被引:5
作者
Rogozinski, Nicholas [1 ]
Yanez, Apuleyo [1 ]
Bhoi, Rahulkumar [1 ]
Lee, Moo-Yeal [1 ]
Yang, Huaxiao [1 ]
机构
[1] Univ North Texas, Dept Biomed Engn, 3940 N Elm St K240B, Denton, TX 76207 USA
关键词
IPSC-DERIVED CARDIOMYOCYTES; SMOOTH-MUSCLE-CELLS; STEM-CELLS; TISSUE; FIBROBLASTS; DIFFERENTIATION; MATURATION; HYDROGELS; BIOWIRE; CULTURE;
D O I
10.1016/j.isci.2022.104330
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
3D cardiac engineered constructs have yielded not only the next generation of cardiac regenerative medicine but also have allowed for more accurate modeling of both healthy and diseased cardiac tissues. This is critical as current cardiac treatments are rudimentary and often default to eventual heart transplants. This review serves to highlight the various cell types found in cardiac tissues and how they correspondwith current advanced fabricationmethods for creating cardiac engineered constructs capable of shedding light on various pathologies and providing the therapeutic potential for damaged myocardium. In addition, insight is given toward the future direction of the field with an emphasis on the creation of specialized and personalized constructs thatmodel the region-specific microtopography and function of native cardiac tissues.
引用
收藏
页数:18
相关论文
共 50 条
[41]   3D Printed Functionally Graded Plasmonic Constructs [J].
Haring, Alexander P. ;
Khan, Assad U. ;
Liu, Guoliang ;
Johnson, Blake N. .
ADVANCED OPTICAL MATERIALS, 2017, 5 (18)
[42]   Layer-by-Layer Assembly of 3D Tissue Constructs with Functionalized Graphene [J].
Shin, Su Ryon ;
Aghaei-Ghareh-Bolagh, Behnaz ;
Gao, Xiguang ;
Nikkhah, Mehdi ;
Jung, Sung Mi ;
Dolatshahi-Pirouz, Alireza ;
Kim, Sang Bok ;
Kim, Sun Min ;
Dokmeci, Mehmet R. ;
Tang, Xiaowu ;
Khademhosseini, Ali .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (39) :6136-6144
[43]   Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue [J].
Li, Yanzhen ;
Asfour, Huda ;
Bursac, Nenad .
ACTA BIOMATERIALIA, 2017, 55 :120-130
[44]   Embedded bioprinting for designer 3D tissue constructs with complex structural organization [J].
Zeng, Xiangbin ;
Meng, Zijie ;
He, Jiankang ;
Mao, Mao ;
Li, Xiao ;
Chen, Pengyu ;
Fan, Jinhai ;
Li, Dichen .
ACTA BIOMATERIALIA, 2022, 140 :1-22
[45]   Glucose Gradients Influence Zonal Matrix Deposition in 3D Cartilage Constructs [J].
Spitters, Tim W. G. M. ;
Mota, Carlos M. D. ;
Uzoechi, Samuel C. ;
Slowinska, Barbara ;
Martens, Dirk E. ;
Moroni, Lorenzo ;
Karperien, Marcel .
TISSUE ENGINEERING PART A, 2014, 20 (23-24) :3270-3278
[46]   Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers [J].
Levato, Riccardo ;
Visser, Jetze ;
Planell, Josep A. ;
Engel, Elisabeth ;
Malda, Jos ;
Mateos-Timoneda, Miguel A. .
BIOFABRICATION, 2014, 6 (03)
[47]   Engineering Photocrosslinkable Bicomponent Hydrogel Constructs for Creating 3D Vascularized Bone [J].
Kazemzadeh-Narbat, Mehdi ;
Rouwkema, Jeroen ;
Annabi, Nasim ;
Cheng, Hao ;
Ghaderi, Masoumeh ;
Cha, Byung-Hyun ;
Aparnathi, Mansi ;
Khalilpour, Akbar ;
Byambaa, Batzaya ;
Jabbari, Esmaiel ;
Tamayol, Ali ;
Khademhosseini, Ali .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (10)
[48]   Proof-of-concept: 3D bioprinting of pigmented human skin constructs [J].
Ng, Wei Long ;
Qi, Jovina Tan Zhi ;
Yeong, Wai Yee ;
Naing, May Win .
BIOFABRICATION, 2018, 10 (02)
[49]   MATERIALS FOR CREATING TISSUE-ENGINEERED CONSTRUCTS USING 3D BIOP RINTING: CARTILAGINOUS AND SOFT TISSUE RESTORATION [J].
Arguchinskaya, N., V ;
Beketov, E. E. ;
Isaeva, E., V ;
Sergeeva, N. S. ;
Shegay, P., V ;
Ivanov, S. A. ;
Kaprin, A. D. .
VESTNIK TRANSPLANTOLOGII I ISKUSSTVENNYH ORGANOV, 2021, 23 (01) :60-74
[50]   The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability [J].
Billiet, Thomas ;
Gevaert, Elien ;
De Schryver, Thomas ;
Cornelissen, Maria ;
Dubruel, Peter .
BIOMATERIALS, 2014, 35 (01) :49-62