Linearly arranged polytypic CZTSSe nanocrystals

被引:43
作者
Fan, Feng-Jia [1 ]
Wu, Liang [1 ]
Gong, Ming [2 ]
Chen, Shi You [3 ]
Liu, Guang Yao [4 ]
Yao, Hong-Bin [1 ]
Liang, Hai-Wei [1 ]
Wang, Yi-Xiu [1 ]
Yu, Shu-Hong [1 ]
机构
[1] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, CAS Key Lab Mech Behav & Design Mat,Dept Chem, Div Nanomat & Chem,Hefei Natl Lab Phys Sci Micros, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Engn & Mat Sci Expt Ctr, Hefei 230026, Peoples R China
[3] E China Normal Univ, Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 对外科技合作项目(国际科技项目);
关键词
QUATERNARY CHALCOGENIDE NANOCRYSTALS; TWIN-PLANE SUPERLATTICES; THERMOELECTRIC PROPERTIES; CU2ZNSNSE4; NANOCRYSTALS; COLLOIDAL SYNTHESIS; WURTZITE; STABILITY; GROWTH; SE;
D O I
10.1038/srep00952
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I-2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4-x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4-x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals.
引用
收藏
页数:6
相关论文
共 44 条
[1]   Band Alignment Tuning in Twin-Plane Superlattices of Semiconductor Nanowires [J].
Akiyama, Toru ;
Yamashita, Tomoki ;
Nakamura, Kohji ;
Ito, Tomonori .
NANO LETTERS, 2010, 10 (11) :4614-4618
[2]   Twinning superlattices in indium phosphide nanowires [J].
Algra, Rienk E. ;
Verheijen, Marcel A. ;
Borgstrom, Magnus T. ;
Feiner, Lou-Fe ;
Immink, George ;
van Enckevort, Willem J. P. ;
Vlieg, Elias ;
Bakkers, Erik P. A. M. .
NATURE, 2008, 456 (7220) :369-372
[3]   Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms [J].
Carbone, Luigi ;
Cozzoli, P. Davide .
NANO TODAY, 2010, 5 (05) :449-493
[4]  
Caroff P, 2009, NAT NANOTECHNOL, V4, P50, DOI [10.1038/nnano.2008.359, 10.1038/NNANO.2008.359]
[5]   Crystal Phases in III-V Nanowires: From Random Toward Engineered Polytypism [J].
Caroff, Philippe ;
Bolinsson, Jessica ;
Johansson, Jonas .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (04) :829-846
[6]   Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors [J].
Chen, Shiyou ;
Walsh, Aron ;
Luo, Ye ;
Yang, Ji-Hui ;
Gong, X. G. ;
Wei, Su-Huai .
PHYSICAL REVIEW B, 2010, 82 (19)
[7]   Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds [J].
Chen, Shiyou ;
Gong, X. G. ;
Walsh, Aron ;
Wei, Su-Huai .
PHYSICAL REVIEW B, 2009, 79 (16)
[8]   Colloidal Hybrid Nanostructures: A New Type of Functional Materials [J].
Costi, Ronny ;
Saunders, Aaron E. ;
Banin, Uri .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (29) :4878-4897
[9]   Octapod-Shaped Colloidal Nanocrystals of Cadmium Chalcogenides via "One-Pot" Cation Exchange and Seeded Growth [J].
Deka, Sasanka ;
Miszta, Karol ;
Dorfs, Dirk ;
Genovese, Alessandro ;
Bertoni, Giovanni ;
Manna, Liberato .
NANO LETTERS, 2010, 10 (09) :3770-3776
[10]   Synthesis and properties of colloidal heteronanocrystals [J].
Donega, Celso de Mello .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (03) :1512-1546