Gamma-based nuclear fusion measurements at inertial confinement fusion facilities

被引:8
|
作者
Mohamed, Z. L. [1 ]
Kim, Y. [1 ]
Knauer, J. P. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Rochester, Lab Laser Energet, Rochester, NY USA
来源
FRONTIERS IN PHYSICS | 2022年 / 10卷
关键词
inertial confinement fusion; fusion gamma ray; laser-driven fusion; omega laser facility; nuclear astrophysics; big bang nucleosynthesis; gamma-ray emission spectra; S factor; CROSS-SECTION; BRANCHING RATIO; LI-6; CNO;
D O I
10.3389/fphy.2022.944339
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Experiments performed on an inertial confinement fusion (ICF) platform offer a unique opportunity to study nuclear reactions, including reaction branches that are useful for diagnostic applications in ICF experiments as well as several that are relevant to nuclear astrophysics. In contrast to beam-accelerator experiments, experiments performed on an ICF platform occur over a short time scale and produce a plasma environment with physical parameters that are directly relevant to big bang and/or stellar nucleosynthesis. Several reactions of interest, such as D(T,gamma)He-5, H(D,gamma)He-3, H(T,gamma)He-4, and T(He-3,gamma)Li-6 produce high-energy gamma rays. S factors or branching ratios for these four reactions have recently been studied using various temporally-resolved Cherenkov detectors at the Omega laser facility. This work describes these detectors as well as the current standard technique for performing these measurements. Recent results for reactions D(T,gamma)He-5, H(D,gamma)He-3, H(T,gamma)He-4, and T(He-3,gamma)Li-6 are reviewed and compared to accelerator-based measurements. Limitations associated with implosion experiments and use of the current standard gamma detectors are discussed. A basic design for a gamma spectrometer for use at ICF facilities is briefly outlined.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Optimization of laser illumination configuration for directly driven inertial confinement fusion
    Murakami, Masakatsu
    Nishi, Daiki
    MATTER AND RADIATION AT EXTREMES, 2017, 2 (02) : 55 - 68
  • [42] Developing one-dimensional implosions for inertial confinement fusion science
    Kline, J. L.
    Yi, S. A.
    Simakov, A. N.
    Olson, R. E.
    Wilson, D. C.
    Kyrala, G. A.
    Perry, T. S.
    Batha, S. H.
    Dewald, E. L.
    Ralph, J. E.
    Strozzi, D. J.
    MacPhee, A. G.
    Callahan, D. A.
    Hinkel, D.
    Hurricane, O. A.
    Leeper, R. J.
    Zylstra, A. B.
    Peterson, R. R.
    Haines, B. M.
    Yin, L.
    Bradley, P. A.
    Shah, R. C.
    Braun, T.
    Biener, J.
    Kozioziemski, B. J.
    Sater, J. D.
    Biener, M. M.
    Hamza, A. V.
    Nikroo, A.
    Hopkins, L. F. Berzak
    Ho, D.
    LePape, S.
    Meezan, N. B.
    Montgomery, D. S.
    Daughton, W. S.
    Merritt, E. C.
    Cardenas, T.
    Dodd, E. S.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2016, 4
  • [43] Shock tube investigation of hydrodynamic issues related to inertial confinement fusion
    Anderson, MH
    Puranik, BP
    Oakley, JG
    Brooks, PW
    Bonazza, R
    SHOCK WAVES, 2000, 10 (05) : 377 - 387
  • [44] A Review of Equation-of-State Models for Inertial Confinement Fusion Materials
    Gaffney, J. A.
    Hu, S. X.
    Arnault, P.
    Becker, A.
    Benedict, L. X.
    Boehly, T. R.
    Celliers, P. M.
    Ceperley, D. M.
    Certik, O.
    Clerouin, J.
    Collins, G. W.
    Collins, L. A.
    Danel, J. -F.
    Desbiens, N.
    Dharma-wardana, M. W. C.
    Ding, Y. H.
    Fernandez-Panella, A.
    Gregor, M. C.
    Grabowski, P. E.
    Hamel, S.
    Hansen, S. B.
    Harbour, L.
    He, X. T.
    Johnson, D. D.
    Kang, W.
    Karasiev, V. V.
    Kazandjian, L.
    Knudson, M. D.
    Ogitsu, T.
    Pierleoni, C.
    Piron, R.
    Redmer, R.
    Robert, G.
    Saumon, D.
    Shamp, A.
    Sjostrom, T.
    Smirnov, A. V.
    Starrett, C. E.
    Sterne, P. A.
    Wardlow, A.
    Whitley, H. D.
    Wilson, B.
    Zhang, P.
    Zurek, E.
    HIGH ENERGY DENSITY PHYSICS, 2018, 28 : 7 - 24
  • [45] Studying Validity of Single-Fluid Model in Inertial Confinement Fusion
    谷建法
    范证锋
    戴振生
    叶文华
    裴文兵
    朱少平
    CommunicationsinTheoreticalPhysics, 2014, 61 (03) : 370 - 376
  • [46] Atomic scale mixing for inertial confinement fusion associated hydro instabilities
    Melvin, J.
    Rao, P.
    Kaufman, R.
    Lim, H.
    Yu, Y.
    Glimm, J.
    Sharp, D. H.
    HIGH ENERGY DENSITY PHYSICS, 2013, 9 (02) : 288 - 296
  • [47] Study of antiprotons as drivers in inertial confinement fusion by fast ignition method
    Azizi, Maryam
    Khanbabaei, Babak
    PHYSICA SCRIPTA, 2023, 98 (09)
  • [48] Studying Validity of Single-Fluid Model in Inertial Confinement Fusion
    Gu Jian-Fa
    Fan Zheng-Feng
    Dai Zhen-Sheng
    Ye Wen-Hua
    Pei Wen-Bing
    Zhu Shao-Ping
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (03) : 370 - 376
  • [49] D and T mixing imbalance and inhomogeneity in an inertial confinement fusion pellet
    Kawata, S
    Kurawaki, K
    Hirota, K
    Fujita, K
    FUSION ENGINEERING AND DESIGN, 1999, 44 : 191 - 194
  • [50] Combustion phenomena in modern physics: I. Inertial confinement fusion
    Bychkov, V.
    Modestov, M.
    Law, C. K.
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2015, 47 : 32 - 59