Gamma-based nuclear fusion measurements at inertial confinement fusion facilities

被引:8
|
作者
Mohamed, Z. L. [1 ]
Kim, Y. [1 ]
Knauer, J. P. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Rochester, Lab Laser Energet, Rochester, NY USA
来源
FRONTIERS IN PHYSICS | 2022年 / 10卷
关键词
inertial confinement fusion; fusion gamma ray; laser-driven fusion; omega laser facility; nuclear astrophysics; big bang nucleosynthesis; gamma-ray emission spectra; S factor; CROSS-SECTION; BRANCHING RATIO; LI-6; CNO;
D O I
10.3389/fphy.2022.944339
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Experiments performed on an inertial confinement fusion (ICF) platform offer a unique opportunity to study nuclear reactions, including reaction branches that are useful for diagnostic applications in ICF experiments as well as several that are relevant to nuclear astrophysics. In contrast to beam-accelerator experiments, experiments performed on an ICF platform occur over a short time scale and produce a plasma environment with physical parameters that are directly relevant to big bang and/or stellar nucleosynthesis. Several reactions of interest, such as D(T,gamma)He-5, H(D,gamma)He-3, H(T,gamma)He-4, and T(He-3,gamma)Li-6 produce high-energy gamma rays. S factors or branching ratios for these four reactions have recently been studied using various temporally-resolved Cherenkov detectors at the Omega laser facility. This work describes these detectors as well as the current standard technique for performing these measurements. Recent results for reactions D(T,gamma)He-5, H(D,gamma)He-3, H(T,gamma)He-4, and T(He-3,gamma)Li-6 are reviewed and compared to accelerator-based measurements. Limitations associated with implosion experiments and use of the current standard gamma detectors are discussed. A basic design for a gamma spectrometer for use at ICF facilities is briefly outlined.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Fixed Source Sensitivity Calculations for Inertial Confinement Fusion Applications
    Weaver, Colin A.
    Perfetti, Christopher M.
    Rising, Michael E.
    NUCLEAR SCIENCE AND ENGINEERING, 2024,
  • [32] Inertial confinement fusion driven by long wavelength electromagnetic pulses
    Baifei Shen
    Xueyan Zhao
    Longqing Yi
    Wei Yu
    Zhizhan Xu
    HighPowerLaserScienceandEngineering, 2013, 1(Z1) (Z1) : 105 - 109
  • [33] Design and Microfabrication of Cooling Arm for Inertial Confinement Fusion Application
    Xu, Bin
    Liu, Jing-quan
    Jiang, Shui-dong
    Tang, Gang
    Yan, Xiao-xiao
    Yang, Bin
    Chen, Xiang
    Yang, Chun-sheng
    SENSORS AND MATERIALS, 2015, 27 (11) : 1091 - 1101
  • [34] Inertial confinement fusion driven by long wavelength electromagnetic pulses
    Shen, Baifei
    Zhao, Xueyan
    Yi, Longqing
    Yu, Wei
    Xu, Zhizhan
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2013, 1 (3-4) : 105 - 109
  • [35] Double-cone ignition scheme for inertial confinement fusion
    Zhang, J.
    Wang, W. M.
    Yang, X. H.
    Wu, D.
    Ma, Y. Y.
    Jiao, J. L.
    Zhang, Z.
    Wu, F. Y.
    Yuan, X. H.
    Li, Y. T.
    Zhu, J. Q.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2184):
  • [36] Inertial confinement fusion energy R&D and nuclear proliferation: The need for direct and transparent review
    Goldston, Robert J.
    Glaser, Alexander
    BULLETIN OF THE ATOMIC SCIENTISTS, 2011, 67 (03) : 59 - 66
  • [37] Direct-Drive Inertial Confinement Fusion Implosions on Omega
    S. P. Regan
    T. C. Sangster
    D. D. Meyerhofer
    K. Anderson
    R. Betti
    T. R. Boehly
    T. J. B. Collins
    R. S. Craxton
    J. A. Delettrez
    R. Epstein
    O. V. Gotchev
    V. Yu. Glebov
    V. N. Goncharov
    D. R. Harding
    P. A. Jaanimagi
    J. P. Knauer
    S. J. Loucks
    L. D. Lund
    J. A. Marozas
    F. J. Marshall
    R. L. Mccrory
    P. W. Mckenty
    S. F. B. Morse
    P. B. Radha
    W. Seka
    S. Skupsky
    H. Sawada
    V. A. Smalyuk
    J. M. Soures
    C. Stoeckl
    B. Yaakobi
    J. A. Frenje
    C. K. Li
    R. D. Petrasso
    F. H. SÉguin
    Astrophysics and Space Science, 2005, 298 : 227 - 233
  • [38] Determination of the deuterium-tritium branching ratio based on inertial confinement fusion implosions
    Kim, Y.
    Mack, J. M.
    Herrmann, H. W.
    Young, C. S.
    Hale, G. M.
    Caldwell, S.
    Hoffman, N. M.
    Evans, S. C.
    Sedillo, T. J.
    McEvoy, A.
    Langenbrunner, J.
    Hsu, H. H.
    Huff, M. A.
    Batha, S.
    Horsfield, C. J.
    Rubery, M. S.
    Garbett, W. J.
    Stoeffl, W.
    Grafil, E.
    Bernstein, L.
    Church, J. A.
    Sayre, D. B.
    Rosenberg, M. J.
    Waugh, C.
    Rinderknecht, H. G.
    Johnson, M. Gatu
    Zylstra, A. B.
    Frenje, J. A.
    Casey, D. T.
    Petrasso, R. D.
    Miller, E. Kirk
    Glebov, V. Yu
    Stoeckl, C.
    Sangster, T. C.
    PHYSICAL REVIEW C, 2012, 85 (06):
  • [39] D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmas
    Kim, Y.
    Mack, J. M.
    Herrmann, H. W.
    Young, C. S.
    Hale, G. M.
    Caldwell, S.
    Hoffman, N. M.
    Evans, S. C.
    Sedillo, T. J.
    McEvoy, A.
    Langenbrunner, J.
    Hsu, H. H.
    Huff, M. A.
    Batha, S.
    Horsfield, C. J.
    Rubery, M. S.
    Garbett, W. J.
    Stoeffl, W.
    Grafil, E.
    Bernstein, L.
    Church, J. A.
    Sayre, D. B.
    Rosenberg, M. J.
    Waugh, C.
    Rinderknecht, H. G.
    Johnson, M. Gatu
    Zylstra, A. B.
    Frenje, J. A.
    Casey, D. T.
    Petrasso, R. D.
    Miller, E. Kirk
    Glebov, V. Yu
    Stoeckl, C.
    Sangster, T. C.
    PHYSICS OF PLASMAS, 2012, 19 (05)
  • [40] Developing one-dimensional implosions for inertial confinement fusion science
    J.L.Kline
    S.A.Yi
    A.N.Simakov
    R.E.Olson
    D.C.Wilson
    G.A.Kyrala
    T.S.Perry
    S.H.Batha
    E.L.Dewald
    J.E.Ralph
    D.J.Strozzi
    A.G.MacPhee
    D.A.Callahan
    D.Hinkel
    O.A.Hurricane
    R.J.Leeper
    A.B.Zylstra
    R.R.Peterson
    B.M.Haines
    L.Yin
    P.A.Bradley
    R.C.Shah
    T.Braun
    J.Biener
    B.J.Kozioziemski
    J.D.Sater
    M.M.Biener
    A.V.Hamza
    A.Nikroo
    L.F.Berzak Hopkins
    D.Ho
    S.LePape
    N.B.Meezan
    D.S.Montgomery
    W.S.Daughton
    E.C.Merritt
    T.Cardenas
    E.S.Dodd
    HighPowerLaserScienceandEngineering, 2016, 4 (04) : 70 - 76