Efficient Selection on Spatial Modulation Antennas: Learning or Boosting

被引:14
|
作者
Zhang, Yue [1 ,2 ]
Wang, Jintao [1 ,2 ]
Wang, Xuesi [1 ,2 ]
Xue, Yonglin [1 ,2 ]
Song, Jian [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
关键词
Transmitting antennas; Modulation; Boosting; MIMO communication; Artificial neural networks; Decision trees; Receiving antennas; Spatial modulation (SM); transmit antenna selection (TAS); deep learning; neural network; gradient boosting decision tree (GBDT);
D O I
10.1109/LWC.2020.2986974
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, a novel deep learning-based transmit antenna selection (TAS) scheme for the multiple-input multiple-output (MIMO) with spatial modulation (SM) system is proposed. We formulate the generalized TAS pipeline in both neural networks (NN) and gradient boosting decision trees (GBDT), in which the importance of different features reflecting the different elements from channel state information (CSI) is analyzed regarding to the empirical data as well. Furthermore, the bit error rate (BER) performance and the complexity comparison of two structures is investigated. Simulation results confirm that GBDT can be efficiently implemented for real-time application with near-optimal performance.
引用
收藏
页码:1249 / 1252
页数:4
相关论文
共 50 条
  • [41] Beamforming and Transmit Power Design for Intelligent Reconfigurable Surface-Aided Secure Spatial Modulation
    Shu, Feng
    Yang, Lili
    Jiang, Xinyi
    Cai, Wenlong
    Shi, Weiping
    Huang, Mengxing
    Wang, Jiangzhou
    You, Xiaohu
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (05) : 933 - 949
  • [42] Boosting enabled efficient machine learning technique for accurate prediction of crop yield towards precision agriculture
    Nagesh, O. Sri
    Budaraju, Raja Rao
    Kulkarni, Shriram S.
    Vinay, M.
    Ajibade, Samuel-Soma M.
    Chopra, Meenu
    Jawarneh, Malik
    Kaliyaperumal, Karthikeyan
    DISCOVER SUSTAINABILITY, 2024, 5 (01):
  • [43] Efficient learning in children with rapid GABA boosting during and after training
    Frank, Sebastian M.
    Becker, Markus
    Qi, Andrea
    Geiger, Patricia
    Frank, Ulrike I.
    Rosedahl, Luke A.
    Malloni, Wilhelm M.
    Sasaki, Yuka
    Greenlee, Mark W.
    Watanabe, Takeo
    CURRENT BIOLOGY, 2022, 32 (23) : 5022 - +
  • [44] Adaptive Spatial Modulation MIMO Based on Machine Learning
    Yang, Ping
    Xiao, Yue
    Xiao, Ming
    Guan, Yong Liang
    Li, Shaoqian
    Xiang, Wei
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (09) : 2117 - 2131
  • [45] Generalised transmit-receive joint spatial modulation
    Cheng, Qian
    Zhu, Jiang
    ELECTRONICS LETTERS, 2017, 53 (24) : 1613 - 1615
  • [46] Precoded Spatial Modulation-Aided Cooperative NOMA
    Kumar, M. Hemanta
    Sharma, Sanjeev
    Thottappan, M.
    Deka, Kuntal
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (06) : 2053 - 2057
  • [47] Cooperative spectrum sharing protocol using spatial modulation
    Ustunbas, Seda
    Basar, Ertugrul
    Aygolu, Umit
    IET COMMUNICATIONS, 2017, 11 (11) : 1759 - 1767
  • [48] A Layer Selection Optimizer for Communication-Efficient Decentralized Federated Deep Learning
    Barbieri, Luca
    Savazzi, Stefano
    Nicoli, Monica
    IEEE ACCESS, 2023, 11 : 22155 - 22173
  • [49] Deep Learning-Based Modulation Recognition for MIMO Systems: Fundamental, Methods, Challenges
    Zhang, Xueqin
    Luo, Zhongqiang
    Xiao, Wenshi
    Feng, Li
    IEEE ACCESS, 2024, 12 : 112558 - 112575
  • [50] Can Spatial Modulation Outperform Spatial Multiplexing in Practical Band-Limited Coded Systems?
    Hama, Yuto
    Ochiai, Hideki
    IEEE COMMUNICATIONS MAGAZINE, 2024, 62 (05) : 128 - 133