Multi-objective particle swarm optimization on ultra-thin silicon solar cells

被引:2
作者
Atalay, Ipek Anil [1 ]
Gunes, Hasan Alper [1 ]
Alpkilic, Ahmet Mesut [1 ]
Kurt, Hamza [1 ]
机构
[1] TOBB Univ Econ & Technol, Dept Elect & Elect Engn, TR-06560 Ankara, Turkey
来源
JOURNAL OF OPTICS-INDIA | 2020年 / 49卷 / 04期
关键词
Solar cells; Anti-reflection; Absorption enhancement; Surface texturing; Light trapping; Multi-objective particle swarm optimization; ABSORPTION ENHANCEMENT; ANTIREFLECTION; FABRICATION; LITHOGRAPHY;
D O I
10.1007/s12596-020-00653-z
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Finding optimized parameters for any photonic device is a challenging problem, because as the search space enlarges the computation time and design complexity increase. For higher performance solar cells, various studies have been carried out to procure optimized parameters, to attain better performance and low cost as well. In this study, we used a multi-objective particle swarm optimization approach to search design space effectively and obtain fixed parameters for enhanced solar spectrum absorption. Numerical investigations are conducted for pyramid surface pattern, to find proper solar cell parameters for minimum reflection and maximum light trapping which give rise to enhanced absorption of photons. For the ultra-thin-film silicon solar cell having a thickness of 1 mu m, a designed double-sided pyramid structure provides an ideal short-circuit photocurrent of 34.23 mA/cm(2). In this regard, the proposed approach can be applied to different film thicknesses of semiconductors for different photonic applications by manipulating the reflection/transmission coefficient and light trapping mechanism.
引用
收藏
页码:446 / 454
页数:9
相关论文
共 50 条
[41]   Multi-objective particle swarm optimization of industrial natural gas dehydration process [J].
Ali Sameer Ismail Al-Jammali ;
Ali Akbar Amooey ;
Seyed Reza Nabavi .
Chemical Papers, 2023, 77 :1067-1080
[42]   A particle swarm approach for multi-objective optimization of electrical discharge machining process [J].
Mohanty, Chinmaya P. ;
Mahapatra, Siba Sankar ;
Singh, Manas Ranjan .
JOURNAL OF INTELLIGENT MANUFACTURING, 2016, 27 (06) :1171-1190
[43]   A COMPREHENSIVE SURVEY: APPLICATIONS OF MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION (MOPSO) ALGORITHM [J].
Lalwani, S. ;
Singhal, S. ;
Kumar, R. ;
Gupta, N. .
TRANSACTIONS ON COMBINATORICS, 2013, 2 (01) :39-101
[44]   Adaptive candidate estimation-assisted multi-objective particle swarm optimization [J].
Han HongGui ;
Zhang LinLin ;
Hou Ying ;
Qiao JunFei .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (08) :1685-1699
[45]   Improvement in ultra-thin hydrogenated amorphous silicon solar cells with nanocrystalline silicon oxide [J].
Fang, Jia ;
Yan, Baojie ;
Li, Tiantain ;
Wei, Changchun ;
Huang, Qian ;
Chen, Xinliang ;
Wang, Guangcai ;
Hou, Guofu ;
Zhao, Ying ;
Zhang, Xiaodan .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 176 :167-173
[46]   A multi-objective particle swarm optimization algorithm based on dynamic boundary search for constrained optimization [J].
Zain, Mohamad Zihin bin Mohd ;
Kanesan, Jeevan ;
Chuah, Joon Huang ;
Dhanapal, Saroja ;
Kendall, Graham .
APPLIED SOFT COMPUTING, 2018, 70 :680-700
[47]   A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy [J].
Ma, Li ;
Dai, Cai ;
Xue, Xingsi ;
Peng, Cheng .
CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (01) :997-1026
[48]   Resonant nano-dimer metasurface for ultra-thin a-Si:H solar cells [J].
Elshorbagy, Mahmoud H. ;
Sanchez, Pablo A. ;
Cuadrado, Alexander ;
Alda, Javier ;
Esteban, Oscar .
SCIENTIFIC REPORTS, 2021, 11 (01)
[49]   Multi-objective Particle Swarm Optimization Algorithm Based on Self-Update strategy [J].
Wang Jianguo ;
Liu Wenjing ;
Zhang Wenxing ;
Yang Bin .
2012 INTERNATIONAL CONFERENCE ON INDUSTRIAL CONTROL AND ELECTRONICS ENGINEERING (ICICEE), 2012, :171-174
[50]   Credible Web Service Composition based on Improved Multi-objective Particle Swarm Optimization [J].
Liu, Feng ;
Han, Min ;
Liu, Jianwei .
2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, :2408-2413