Multi-objective particle swarm optimization on ultra-thin silicon solar cells

被引:2
作者
Atalay, Ipek Anil [1 ]
Gunes, Hasan Alper [1 ]
Alpkilic, Ahmet Mesut [1 ]
Kurt, Hamza [1 ]
机构
[1] TOBB Univ Econ & Technol, Dept Elect & Elect Engn, TR-06560 Ankara, Turkey
来源
JOURNAL OF OPTICS-INDIA | 2020年 / 49卷 / 04期
关键词
Solar cells; Anti-reflection; Absorption enhancement; Surface texturing; Light trapping; Multi-objective particle swarm optimization; ABSORPTION ENHANCEMENT; ANTIREFLECTION; FABRICATION; LITHOGRAPHY;
D O I
10.1007/s12596-020-00653-z
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Finding optimized parameters for any photonic device is a challenging problem, because as the search space enlarges the computation time and design complexity increase. For higher performance solar cells, various studies have been carried out to procure optimized parameters, to attain better performance and low cost as well. In this study, we used a multi-objective particle swarm optimization approach to search design space effectively and obtain fixed parameters for enhanced solar spectrum absorption. Numerical investigations are conducted for pyramid surface pattern, to find proper solar cell parameters for minimum reflection and maximum light trapping which give rise to enhanced absorption of photons. For the ultra-thin-film silicon solar cell having a thickness of 1 mu m, a designed double-sided pyramid structure provides an ideal short-circuit photocurrent of 34.23 mA/cm(2). In this regard, the proposed approach can be applied to different film thicknesses of semiconductors for different photonic applications by manipulating the reflection/transmission coefficient and light trapping mechanism.
引用
收藏
页码:446 / 454
页数:9
相关论文
共 50 条
  • [1] Multi-objective particle swarm optimization on ultra-thin silicon solar cells
    Ipek Anil Atalay
    Hasan Alper Gunes
    Ahmet Mesut Alpkilic
    Hamza Kurt
    Journal of Optics, 2020, 49 : 446 - 454
  • [2] An Improved Multi-objective Particle Swarm Optimization
    Xu, Shengbing
    Ouyang, Zhiping
    Feng, Jiqiang
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2020), 2020, : 19 - 23
  • [3] Lifetime assessment in crystalline silicon: From nanopatterned wafer to ultra-thin crystalline films for solar cells
    Cosme, I.
    Cariou, R.
    Chen, W.
    Foldyna, M.
    Boukhicha, R.
    Cabarrocas, P. Roca i
    Lee, K. D.
    Trornpoukis, C.
    Depauw, V.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 135 : 93 - 98
  • [4] Multi-Objective Particle Swarm Optimization based on particle density
    Hasegawa T.
    Ishigame A.
    Yasuda K.
    IEEJ Transactions on Electronics, Information and Systems, 2010, 130 (07) : 1207 - 1212+16
  • [5] DMOPSO: Dual Multi-Objective Particle Swarm Optimization
    Lee, Ki-Baek
    Kim, Jong-Hwan
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 3096 - 3102
  • [6] Entropy Diversity in Multi-Objective Particle Swarm Optimization
    Solteiro Pires, Eduardo J.
    Tenreiro Machado, Jose A.
    de Moura Oliveira, Paulo B.
    ENTROPY, 2013, 15 (12) : 5475 - 5491
  • [7] Multi-objective particle swarm optimization of hydrofoil sections
    Wang, Chao, 1600, Editorial Board of Journal of Harbin Engineering (35): : 1451 - 1457
  • [8] Double grating high efficiency nanostructured silicon-based ultra-thin solar cells
    Sun, Tangyou
    Shi, Hui
    Cao, Le
    Liu, Yun
    Tu, Jie
    Lu, Meijun
    Li, Haiou
    Zhao, Wenning
    Li, Qi
    Fu, Tao
    Zhang, Fabi
    RESULTS IN PHYSICS, 2020, 19
  • [9] Robust Design Optimization Based on Multi-Objective Particle Swarm Optimization
    Yu Yan
    Dai Guangming
    Chen Liang
    Zhou Chong
    Peng Lei
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4918 - 4925
  • [10] Ultra-thin Silicon Substrates for Nanostructured Solar Cells
    Koval, V.
    Ivashchuk, A.
    Yakymenko, Yu.
    Dusheyko, M.
    Fadieiev, M.
    Matkivskyi, V.
    2017 IEEE 37TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2017, : 217 - 220