Ultrafast nonlinear optical response of Dirac fermions in graphene

被引:63
|
作者
Baudisch, Matthias [1 ]
Marini, Andrea [1 ,4 ]
Cox, Joel D. [1 ]
Zhu, Tony [2 ]
Silva, Francisco [1 ]
Teichmann, Stephan [1 ]
Massicotte, Mathieu [1 ]
Koppens, Frank [1 ,3 ]
Levitov, Leonid S. [2 ]
Garcia de Abajo, F. Javier [1 ,3 ]
Biegert, Jens [1 ,3 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
[4] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio 10, I-67100 Laquila, Italy
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
欧盟地平线“2020”;
关键词
HARMONIC-GENERATION; TERAHERTZ; MOBILITY; REGIME; FIELD;
D O I
10.1038/s41467-018-03413-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The speed of solid-state electronic devices, determined by the temporal dynamics of charge carriers, could potentially reach unprecedented petahertz frequencies through direct manipulation by optical fields, consisting in a million-fold increase from state-of-the-art technology. In graphene, charge carrier manipulation is facilitated by exceptionally strong coupling to optical fields, from which stems an important back-action of photoexcited carriers. Here we investigate the instantaneous response of graphene to ultrafast optical fields, elucidating the role of hot carriers on sub-100 fs timescales. The measured nonlinear response and its dependence on interaction time and field polarization reveal the back-action of hot carriers over timescales commensurate with the optical field. An intuitive picture is given for the carrier trajectories in response to the optical-field polarization state. We note that the peculiar interplay between optical fields and charge carriers in graphene may also apply to surface states in topological insulators with similar Dirac cone dispersion relations.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Thermoelectric power of Dirac fermions in graphene
    Yan, Xin-Zhong
    Romiah, Yousef
    Ting, C. S.
    PHYSICAL REVIEW B, 2009, 80 (16):
  • [22] Ultrafast dynamics of helical Dirac fermions in the topological insulators
    Bai, Ya
    Li, Na
    Li, Ruxin
    Liu, Peng
    ADVANCES IN PHYSICS-X, 2022, 7 (01):
  • [23] Magnetic confinement of massless Dirac fermions in graphene
    De Martino, A.
    Dell'Anna, L.
    Egger, R.
    PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [24] Guiding Dirac Fermions in Graphene with a Carbon Nanotube
    Cheng, Austin
    Taniguchi, Takashi
    Watanabe, Kenji
    Kim, Philip
    Pillet, Jean-Damien
    PHYSICAL REVIEW LETTERS, 2019, 123 (21)
  • [25] Dirac fermions in asymmetric graphene in electromagnetic field
    Mishra, Km Arti
    Kumar, Vipin
    OPTICAL AND QUANTUM ELECTRONICS, 2020, 52 (06)
  • [26] Dirac Fermions in Strongly Bound Graphene Systems
    Li, Yuanchang
    Chen, Pengcheng
    Zhou, Gang
    Li, Jia
    Wu, Jian
    Gu, Bing-Lin
    Zhang, S. B.
    Duan, Wenhui
    PHYSICAL REVIEW LETTERS, 2012, 109 (20)
  • [27] Observation of negative refraction of Dirac fermions in graphene
    Lee, Gil-Ho
    Park, Geon-Hyoung
    Lee, Hu-Jong
    NATURE PHYSICS, 2015, 11 (11) : 925 - 929
  • [28] Electrically Induced Dirac Fermions in Graphene Nanoribbons
    Pizzochero, Michele
    Tepliakov, Nikita, V
    Mostofi, Arash A.
    Kaxiras, Efthimios
    NANO LETTERS, 2021, 21 (21) : 9332 - 9338
  • [29] Dirac fermions in asymmetric graphene in electromagnetic field
    Km Arti Mishra
    Vipin Kumar
    Optical and Quantum Electronics, 2020, 52
  • [30] Size quantization of Dirac fermions in graphene constrictions
    Terres, B.
    Chizhova, L. A.
    Libisch, F.
    Peiro, J.
    Joerger, D.
    Engels, S.
    Girschik, A.
    Watanabe, K.
    Taniguchi, T.
    Rotkin, S. V.
    Burgdoerfer, J.
    Stampfer, C.
    NATURE COMMUNICATIONS, 2016, 7