Ultrafast nonlinear optical response of Dirac fermions in graphene

被引:63
|
作者
Baudisch, Matthias [1 ]
Marini, Andrea [1 ,4 ]
Cox, Joel D. [1 ]
Zhu, Tony [2 ]
Silva, Francisco [1 ]
Teichmann, Stephan [1 ]
Massicotte, Mathieu [1 ]
Koppens, Frank [1 ,3 ]
Levitov, Leonid S. [2 ]
Garcia de Abajo, F. Javier [1 ,3 ]
Biegert, Jens [1 ,3 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
[4] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio 10, I-67100 Laquila, Italy
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
欧盟地平线“2020”;
关键词
HARMONIC-GENERATION; TERAHERTZ; MOBILITY; REGIME; FIELD;
D O I
10.1038/s41467-018-03413-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The speed of solid-state electronic devices, determined by the temporal dynamics of charge carriers, could potentially reach unprecedented petahertz frequencies through direct manipulation by optical fields, consisting in a million-fold increase from state-of-the-art technology. In graphene, charge carrier manipulation is facilitated by exceptionally strong coupling to optical fields, from which stems an important back-action of photoexcited carriers. Here we investigate the instantaneous response of graphene to ultrafast optical fields, elucidating the role of hot carriers on sub-100 fs timescales. The measured nonlinear response and its dependence on interaction time and field polarization reveal the back-action of hot carriers over timescales commensurate with the optical field. An intuitive picture is given for the carrier trajectories in response to the optical-field polarization state. We note that the peculiar interplay between optical fields and charge carriers in graphene may also apply to surface states in topological insulators with similar Dirac cone dispersion relations.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Composite Dirac fermions in graphene
    Khveshchenko, D. V.
    PHYSICAL REVIEW B, 2007, 75 (15):
  • [12] A study of the nonlinear optical response of the plain graphene and gapped graphene monolayers beyond the Dirac approximation
    Ventura, G. B.
    Passos, D. J.
    Viana Parente Lopes, J. M.
    Lopes dos Santos, J. M. B.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (18)
  • [13] Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene (vol 12, pg 430, 2018)
    Jiang, Tao
    Huang, Di
    Cheng, Jinluo
    Fan, Xiaodong
    Zhang, Zhihong
    Shan, Yuwei
    Yi, Yangfan
    Dai, Yunyun
    Shi, Lei
    Liu, Kaihui
    Zeng, Changgan
    Zi, Jian
    Sipe, J. E.
    Shen, Yuen-Ron
    Liu, Wei-Tao
    Wu, Shiwei
    NATURE PHOTONICS, 2018, 12 (10) : 634 - 634
  • [14] Analogies for Dirac fermions physics in graphene
    Dragoman, Daniela
    Dragoman, Mircea
    SOLID-STATE ELECTRONICS, 2024, 211
  • [15] Weak localization of Dirac fermions in graphene
    Yan, Xin-Zhong
    Ting, C. S.
    PHYSICAL REVIEW LETTERS, 2008, 101 (12)
  • [16] Cloning of Dirac fermions in graphene superlattices
    L. A. Ponomarenko
    R. V. Gorbachev
    G. L. Yu
    D. C. Elias
    R. Jalil
    A. A. Patel
    A. Mishchenko
    A. S. Mayorov
    C. R. Woods
    J. R. Wallbank
    M. Mucha-Kruczynski
    B. A. Piot
    M. Potemski
    I. V. Grigorieva
    K. S. Novoselov
    F. Guinea
    V. I. Fal’ko
    A. K. Geim
    Nature, 2013, 497 : 594 - 597
  • [17] Cloning of Dirac fermions in graphene superlattices
    Ponomarenko, L. A.
    Gorbachev, R. V.
    Yu, G. L.
    Elias, D. C.
    Jalil, R.
    Patel, A. A.
    Mishchenko, A.
    Mayorov, A. S.
    Woods, C. R.
    Wallbank, J. R.
    Mucha-Kruczynski, M.
    Piot, B. A.
    Potemski, M.
    Grigorieva, I. V.
    Novoselov, K. S.
    Guinea, F.
    Fal'ko, V. I.
    Geim, A. K.
    NATURE, 2013, 497 (7451) : 594 - 597
  • [18] Drude conductivity of Dirac fermions in graphene
    Horng, Jason
    Chen, Chi-Fan
    Geng, Baisong
    Girit, Caglar
    Zhang, Yuanbo
    Hao, Zhao
    Bechtel, Hans A.
    Martin, Michael
    Zettl, Alex
    Crommie, Michael F.
    Shen, Y. Ron
    Wang, Feng
    PHYSICAL REVIEW B, 2011, 83 (16)
  • [19] Superconductivity of disordered Dirac fermions in graphene
    Potirniche, Ionut-Dragos
    Maciejko, Joseph
    Nandkishore, Rahul
    Sondhi, S. L.
    PHYSICAL REVIEW B, 2014, 90 (09)
  • [20] Confinement of Dirac fermions in gapped graphene
    Pakdel, Fatemeh
    Maleki, Mohammad Ali
    SCIENTIFIC REPORTS, 2024, 14 (01):