ON THE UNIVERSALITY OF THE HURWITZ ZETA-FUNCTION

被引:7
|
作者
Laurincikas, Antanas [1 ,2 ]
机构
[1] Vilnius State Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
[2] Siauliai Univ, Fac Math & Informat, LT-77156 Shiauliai, Lithuania
关键词
Limit theorem; Hurwitz zeta-function; space of analytic functions; universality;
D O I
10.1142/S1793042112501308
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the Hurwitz zeta-function zeta(s, alpha) with transcendental or rational parameter alpha is universal in the sense that its shifts zeta(s + i tau, alpha), tau is an element of R, approximate with a given accuracy any analytic function uniformly on compact subsets of the strip D = {s is an element of C : 1/2 < sigma < 1}. Let H(D) denote the space of analytic functions on D equipped with the topology of uniform convergence on compacta. In the paper, the classes of functions F : H(D) -> H(D) such that F(zeta(s, alpha)) is universal in the above sense are considered. For example, if F is continuous and, for each polynomial p = p(s), the set F-1 {p} is non-empty, then F(zeta(s, alpha)) with transcendental alpha is universal.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 50 条