Cyclic softening behaviors of ultra-fine grained Cu-Zn alloys

被引:29
|
作者
Zhang, Z. J. [1 ]
Zhang, P. [1 ]
Zhang, Z. F. [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu-Zn alloy; Ultra-fine grain; Low-cycle fatigue; Shear bands; Dislocation slip mode; SEVERE PLASTIC-DEFORMATION; STACKING-FAULT ENERGY; FATIGUE PROPERTIES; MICROSTRUCTURAL EVOLUTION; NANOCRYSTALLINE METALS; MECHANICAL-PROPERTIES; PLANAR-SLIP; SHEAR BANDS; AL ALLOYS; COPPER;
D O I
10.1016/j.actamat.2016.09.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Low-cycle fatigue tests were carried out on ultra-fine grained (UFG) Cu and Cu-Zn alloys to reveal the mechanisms of cyclic softening and the effects of dislocation slip mode. Based on careful examinations of the grain coarsening (GC), shear band (SB) evolutions and surface hardness change during cyclic deformation, the microscopic mechanisms of the cyclic softening process and the correlations between GC and SBs were deeply revealed. Besides, a general and coincident relationship was found between the softening velocities and the fatigue lives for UFG Cu and Cu alloys. Finally, it is approved that through alloying to increase the slip planarity, the cyclic softening caused by GC and SBs can be largely restrained such that the fatigue life may be improved effectively. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:331 / 342
页数:12
相关论文
共 50 条
  • [31] Structure and properties of ultra-fine grained aluminium alloys produced by severe plastic deformation
    Markushev, MV
    Bampton, CC
    Murashkin, MY
    Hardwick, DA
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 234 : 927 - 931
  • [32] Microstructures of ultra-fine grained FeCoV alloys processed by ECAP plus cold rolling and their evolutions during tempering
    Wu Lai-zhi
    Chen Jun
    Du Zhong-ze
    Wang Jing-tao
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20 (04) : 602 - 606
  • [33] Investigation on Corrosion Behaviors of Ultra-Fine Grain Copper in 3.5% NaCl Solution
    Wang, Qingjuan
    Wang, Y. C.
    Du, Zhongze
    Liu, Xiaoyan
    NANOMATERIALS BY SEVERE PLASTIC DEFORMATION: NANOSPD5, PTS 1 AND 2, 2011, 667-669 : 1125 - 1130
  • [34] Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys
    Zhao, Y. H.
    Liao, X. Z.
    Horita, Z.
    Langdon, T. G.
    Zhu, Y. T.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 493 (1-2): : 123 - 129
  • [35] Micro-extrusion of ultra-fine grained aluminium
    Andrzej Rosochowski
    Wojciech Presz
    Lech Olejnik
    Maria Richert
    The International Journal of Advanced Manufacturing Technology, 2007, 33 : 137 - 146
  • [36] Effects of dislocation slip mode on high-cycle fatigue behaviors of ultrafine-grained Cu-Zn alloy processed by equal-channel angular pressing
    Zhang, Z. J.
    An, X. H.
    Zhang, P.
    Yang, M. X.
    Yang, G.
    Wu, S. D.
    Zhang, Z. F.
    SCRIPTA MATERIALIA, 2013, 68 (06) : 389 - 392
  • [37] Micro-extrusion of ultra-fine grained aluminium
    Rosochowski, Andrzej
    Presz, Wojciech
    Olejnik, Lech
    Richert, Maria
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2007, 33 (1-2) : 137 - 146
  • [38] Cyclic deformation behavior of ultra-fine grained copper processed by accumulative roll-bonding
    Kwan, Charles C. F.
    Wang, Zhirui
    FATIGUE 2010, 2010, 2 (01): : 101 - 110
  • [39] An in vivo Evaluation of Ultra-fine Grained Titanium Implants
    Bindu, S.
    Sanosh, K. P.
    Smetana, K.
    Balakrishnan, A.
    Kim, T. N.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2009, 25 (04) : 556 - 560
  • [40] Ultra-fine grained Al-Mg alloys with superior strength via physical simulation
    Sabirov, I.
    Enikeev, N.
    Kazykhanov, V.
    Valiev, R.
    Murashkin, M.
    6TH INTERNATIONAL CONFERENCE ON NANOMATERIALS BY SEVERE PLASTIC DEFORMATION (NANOSPD6), 2014, 63