The average value of Fourier coefficients of cusp forms in arithmetic progressions

被引:9
作者
Lue, Guangshi [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Arithmetic progression; Cusp form; Fourier coefficient; RAMANUJAN FUNCTION; DIVISOR PROBLEM; SUMS;
D O I
10.1016/j.jnt.2008.05.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently Blomer showed that if alpha(n) denote the normalized Fourier coefficients of any holomorphic cusp form f with integral weight, then [GRAPHICS] holds uniformly in q <= X. By an elementary argument we show that independent of q, [GRAPHICS] where alpha(n) could be the normalized Fourier coefficients of any reasonable cusp forms, including Maass cusp forms, holomorphic Cusp forms with half-integral or integral weights. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:488 / 494
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 2002, GRADUATE STUDIES MAT
[2]  
Banks SP, 2005, INT J INNOV COMPUT I, V1, P1
[3]   The average value of divisor sums in arithmetic progressions [J].
Blomer, V. .
QUARTERLY JOURNAL OF MATHEMATICS, 2008, 59 :275-286
[4]  
Deligne P., 1974, PUBL MATH-PARIS, V43, P273, DOI 10.1007/BF02684373
[5]   BILINEAR-FORMS IN THE FOURIER COEFFICIENTS OF HALF-INTEGRAL WEIGHT CUSP FORMS AND SUMS OVER PRIMES [J].
DUKE, W ;
IWANIEC, H .
MATHEMATISCHE ANNALEN, 1990, 286 (04) :783-802
[6]   THE DIVISOR PROBLEM FOR ARITHMETIC PROGRESSIONS [J].
FRIEDLANDER, JB ;
IWANIEC, H .
ACTA ARITHMETICA, 1985, 45 (03) :273-277
[7]   INCOMPLETE KLOOSTERMAN SUMS AND A DIVISOR PROBLEM [J].
FRIEDLANDER, JB ;
IWANIEC, H ;
BIRCH, BJ ;
BOMBIERI, E .
ANNALS OF MATHEMATICS, 1985, 121 (02) :319-350
[8]   The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points.: II [J].
Harcos, G ;
Michel, P .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :581-655
[9]  
HEATHBROWN R, 1987, ACTA ARITH, V47, P29
[10]  
Iwaniec H., 1997, GRADUATE STUDIES MAT