A recursive l∞-trust-region method for bound-constrained nonlinear optimization

被引:25
作者
Gratton, Serge [2 ]
Mouffe, Melodie [2 ]
Toint, Philippe L. [1 ]
Weber-Mendonca, Melissa [1 ]
机构
[1] Univ Namur, Dept Math, B-5000 Namur, Belgium
[2] Ctr Europeen Rech & Format Avancee Calcul Sci, Toulouse, France
关键词
D O I
10.1093/imanum/drn034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A recursive trust-region method is introduced for the solution of bound-cons-trained nonlinear nonconvex optimization problems for which a hierarchy of descriptions exists. Typical cases are infinite-dimensional problems for which the levels of the hierarchy correspond to discretization levels, from coarse to fine. The new method uses the infinity norm to define the shape of the trust region, which is well adapted to the handling of bounds and also to the use of successive coordinate minimization as a smoothing technique. Numerical tests motivate a theoretical analysis showing convergence to first-order critical points irrespective of the starting point.
引用
收藏
页码:827 / 861
页数:35
相关论文
共 26 条
[1]  
[Anonymous], 1998, ANN SEMINAR RECENT D
[2]   A globalization strategy for the multigrid solution of elliptic optimal control problems [J].
Borzì, A ;
Kunisch, K .
OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (03) :445-459
[3]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[4]  
Briggs W.L., 2000, A Multigrid Tutorial
[5]   PROJECTED GRADIENT METHODS FOR LINEARLY CONSTRAINED PROBLEMS [J].
CALAMAI, PH ;
MORE, JJ .
MATHEMATICAL PROGRAMMING, 1987, 39 (01) :93-116
[6]  
Conn A., 2000, MOS-SIAM Series on Optimization
[7]  
Conn A.R., 1992, SPRINGER SERIES COMP, V17
[8]  
CONN AR, 1988, MATH COMPUT, V50, P399, DOI 10.1090/S0025-5718-1988-0929544-3
[9]  
Frese T, 1999, APPL NUM HARM ANAL, P237
[10]   ON MULTILEVEL ITERATIVE METHODS FOR OPTIMIZATION PROBLEMS [J].
GELMAN, E ;
MANDEL, J .
MATHEMATICAL PROGRAMMING, 1990, 48 (01) :1-17