Almost Global Existence for the 3D Prandtl Boundary Layer Equations

被引:12
|
作者
Lin, Xueyun [1 ,2 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Prandtl equations; Almost global existence; Littlewood-Paley theory; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; TIME WELL-POSEDNESS; ANALYTIC SOLUTIONS; ILL-POSEDNESS; HALF-SPACE; MONOTONICITY; SYSTEM; EULER;
D O I
10.1007/s10440-019-00303-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the almost global existence of classical solutions to the 3D Prandtl system with the initial data which lie within epsilon of a stable shear flow. Using anisotropic Littlewood-Paley energy estimates in tangentially analytic norms and introducing new linearly-good unknowns, we prove that the 3D Prandtl system has a unique solution with the lifespan of which is greater than exp(epsilon(-1)/ log(epsilon(-1))). This result extends the work obtained by Ignatova and Vicol (Arch. Ration. Mech. Anal. 2:809-848, 2016) on the 2D Prandtl equations to the three-dimensional setting.
引用
收藏
页码:383 / 410
页数:28
相关论文
共 50 条
  • [41] Existence of global weak solutions for a 3D Navier-Stokes-Poisson-Korteweg equations
    Yang, Jianwei
    Wang, Zhengyan
    Ding, Fengxia
    APPLICABLE ANALYSIS, 2018, 97 (04) : 528 - 537
  • [42] GLOBAL EXISTENCE OF SUITABLE WEAK SOLUTIONS TO THE 3D CHEMOTAXIS-NAVIER-STOKES EQUATIONS
    Chen, Xiaomeng
    Li, Shuai
    Wang, Lili
    Wang, Wendong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (02) : 425 - 479
  • [43] ALMOST GLOBAL EXISTENCE FOR EXTERIOR NEUMANN PROBLEMS OF SEMILINEAR WAVE EQUATIONS IN 2D
    Katayama, Soichiro
    Kubo, Hideo
    Lucente, Sandra
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 2331 - 2360
  • [44] Almost Global Existence of Solutions to the Kadomtsev-Petviashvili Equations
    Hayashi, Nakao
    Naumkin, Pavel I.
    Niizato, Tomoyuki
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2012, 55 (01): : 157 - 168
  • [45] Global small solutions of MHD boundary layer equations in Gevrey function space
    Tan, Zhong
    Wu, Zhonger
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 366 : 444 - 517
  • [46] Well-Posedness in Gevrey Function Space for 3D Prandtl Equations without Structural Assumption
    Li, Wei-Xi
    Masmoudi, Nader
    Yang, Tong
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2022, 75 (08) : 1755 - 1797
  • [47] Global existence of 3D rotating magnetohydrodynamic equations arising from Earth's fluid core
    Sun, Jinyi
    Wang, Weining
    Zhao, Dandan
    NETWORKS AND HETEROGENEOUS MEDIA, 2025, 20 (01) : 35 - 51
  • [48] Local existence of solutions to the 2D MHD boundary layer equations without monotonicity in Sobolev space
    Dong, Xiaolei
    AIMS MATHEMATICS, 2024, 9 (03): : 5294 - 5329
  • [49] Existence and Approximation of Statistical Solutions of the 3D MHD Equations
    Zhang, Yuanyuan
    Chen, Guanggan
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 37 (03): : 326 - 354
  • [50] Global and almost global existence for general quasilinear wave equations in two space dimensions
    Zha, Dongbing
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 123 : 270 - 299