Almost Global Existence for the 3D Prandtl Boundary Layer Equations

被引:12
|
作者
Lin, Xueyun [1 ,2 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Prandtl equations; Almost global existence; Littlewood-Paley theory; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; TIME WELL-POSEDNESS; ANALYTIC SOLUTIONS; ILL-POSEDNESS; HALF-SPACE; MONOTONICITY; SYSTEM; EULER;
D O I
10.1007/s10440-019-00303-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the almost global existence of classical solutions to the 3D Prandtl system with the initial data which lie within epsilon of a stable shear flow. Using anisotropic Littlewood-Paley energy estimates in tangentially analytic norms and introducing new linearly-good unknowns, we prove that the 3D Prandtl system has a unique solution with the lifespan of which is greater than exp(epsilon(-1)/ log(epsilon(-1))). This result extends the work obtained by Ignatova and Vicol (Arch. Ration. Mech. Anal. 2:809-848, 2016) on the 2D Prandtl equations to the three-dimensional setting.
引用
收藏
页码:383 / 410
页数:28
相关论文
共 50 条
  • [1] Almost Global Existence for the 3D Prandtl Boundary Layer Equations
    Xueyun Lin
    Ting Zhang
    Acta Applicandae Mathematicae, 2020, 169 : 383 - 410
  • [2] Almost Global Existence for the Prandtl Boundary Layer Equations
    Ignatova, Mihaela
    Vicol, Vlad
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) : 809 - 848
  • [3] Almost global existence for 2D magnetohydrodynamics boundary layer system
    Lin, Xueyun
    Zhang, Ting
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7530 - 7553
  • [4] LONG-TIME EXISTENCE OF GEVREY-2 SOLUTIONS TO THE 3D PRANDTL BOUNDARY LAYER EQUATIONS
    Pan, Xinghong
    Xu, Chao-jiang
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (05) : 1203 - 1250
  • [5] Local existence of solutions to 3D Prandtl equations with a special structure
    Qin, Yuming
    Wang, Xiuqing
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2025, 194
  • [6] GLOBAL-IN-TIME STABILITY OF 2D MHD BOUNDARY LAYER IN THE PRANDTL-HARTMANN REGIME
    Xie, Feng
    Yang, Tong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (06) : 5749 - 5760
  • [7] GLOBAL EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE PRANDTL-HARTMANN BOUNDARY LAYER EQUATIONS
    Dong, Xiaolei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, : 1876 - 1886
  • [8] Global Gevrey-2 solutions of the 3D axially symmetric Prandtl equations
    Pan, Xinghong
    Xu, Chao-Jiang
    ANALYSIS AND APPLICATIONS, 2024, 22 (07) : 1195 - 1253
  • [9] ON THE LOCAL EXISTENCE OF ANALYTIC SOLUTIONS TO THE PRANDTL BOUNDARY LAYER EQUATIONS
    Kukavica, Igor
    Vicol, Vlad
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (01) : 269 - 292
  • [10] Global existence and decay estimates of solutions for the compressible Prandtl type equations with small analytic data
    Chen, Yuhui
    Huang, Jingchi
    Li, Minling
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (07)