Stable nanocolloids of monoclinic sulfur (beta-SNPs) were prepared through 'water-in-oil micro-emulsion technique' at room temperature after suitable modifications of the surface. The morphology (rod shaped; similar to 50 nm in diameter) and allotropic nature (monoclinic) of the SNPs were investigated with Transmission Electron Microscopy and X-ray Diffraction technique. The surface modification, colloidal stability, and surface topology of beta-SNPs were evaluated with Fourier Transform Infrared Spectroscopy, zeta potential analysis, and Atomic Force Microscopy. Thermal decomposition pattern of these nanosized particles was determined by Thermo Gravimetric Analysis (TGA). beta-SNPs-colloids expressed excellent antimicrobial activities against a series of fungal and bacterial isolates with prominent deformities at their surface. In contrast, insignificant cytotoxicity was achieved against the human derived hepatoma (HepG2) cell line upon treatment with beta-SNPs. A simultaneous study was performed to determine the stock concentration of beta-SNP-colloids using a novel high phase liquid chromatographic method. Cumulative results of this study hence, elucidate the stabilization of nanosized monoclinic sulfur at room temperature and their potential antimicrobial efficacy over micron-sized sulfur.