Classifying individuals as physiological responders using hierarchical modeling

被引:4
作者
Barker, Richard J. [1 ]
Schofield, Matthew R. [1 ]
机构
[1] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
关键词
hierarchical model; Bayesian inference;
D O I
10.1152/japplphysiol.01317.2007
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
We outline the use of hierarchical modeling for inference about the categorization of subjects into "responder" and "nonresponder" classes when the true status of the subject is latent (hidden). If uncertainty of classification is ignored during analysis, then statistical inference may be unreliable. An important advantage of hierarchical modeling is that it facilitates the correct modeling of the hidden variable in terms of predictor variables and hypothesized biological relationships. This allows researchers to formalize inference that can address questions about why some subjects respond and others do not. We illustrate our approach using a recent study of hepcidin excretion in female marathon runners (Roecker L, Meier-Buttermilch R, Brechte L, Nemeth E, Ganz T. Eur J Appl Physiol 95: 569-571, 2005).
引用
收藏
页码:555 / 560
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 2021, Bayesian Data Analysis
[2]   Resting thyroid and leptin hormone changes in women following intense, prolonged exercise training [J].
Baylor, LS ;
Hackney, AC .
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2003, 88 (4-5) :480-484
[3]   MISCLASSIFICATION IN 2 X 2 TABLES [J].
BROSS, I .
BIOMETRICS, 1954, 10 (04) :478-486
[4]   EXPLAINING THE GIBBS SAMPLER [J].
CASELLA, G ;
GEORGE, EI .
AMERICAN STATISTICIAN, 1992, 46 (03) :167-174
[5]   Correcting bias due to misclassification in the estimation of logistic regression models [J].
Cheng, KF ;
Hsueh, HM .
STATISTICS & PROBABILITY LETTERS, 1999, 44 (03) :229-240
[6]  
COPAS JB, 1988, J R STAT SOC B, V50, P225
[7]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[8]   Estimation of generalized linear latent variable models [J].
Huber, P ;
Ronchetti, E ;
Victoria-Feser, MP .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 :893-908
[9]   The selection of prior distributions by formal rules [J].
Kass, RE ;
Wasserman, L .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (435) :1343-1370
[10]  
Link WA, 2006, ECOLOGY, V87, P2626, DOI 10.1890/0012-9658(2006)87[2626:MWATFO]2.0.CO