Distributionally Robust Bayesian Optimization

被引:0
作者
Kirschner, Johannes [1 ]
Bogunovic, Ilija [1 ]
Jegelka, Stefanie [2 ]
Krause, Andreas [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] MIT, Cambridge, MA 02139 USA
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108 | 2020年 / 108卷
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robustness to distributional shift is one of the key challenges of contemporary machine learning. Attaining such robustness is the goal of distributionally robust optimization, which seeks a solution to an optimization problem that is worst-case robust under a specified distributional shift of an uncontrolled covariate. In this paper, we study such a problem when the distributional shift is measured via the maximum mean discrepancy (MMD). For the setting of zeroth-order, noisy optimization, we present a novel distributionally robust Bayesian optimization algorithm (DRBO). Our algorithm provably obtains sub-linear robust regret in various settings that differ in how the uncertain covariate is observed. We demonstrate the robust performance of our method on both synthetic and real-world benchmarks.
引用
收藏
页码:1921 / 1930
页数:10
相关论文
共 44 条
[1]  
Abbasi-Yadkori Y., 2013, Online learning for linearly parametrized control problems
[2]  
Amodei Dario, 2016, PREPRINT, DOI 10.48550/ARXIV.1606.06565
[3]  
[Anonymous], 2016, ARXIV161104488
[4]  
[Anonymous], 2006, Gaussian Processes for MachineLearning
[5]  
[Anonymous], 2014, ARXIV14035607
[6]  
[Anonymous], 2019, DATA PACKAGE TIME SE, DOI 10.25832/time_series/2019-06-05.Version2019-06-05
[7]  
[Anonymous], 2018, P INT C LEARN THEOR
[8]  
Beland J. J., 2017, P NIPS BAYESOPT 2017, P1
[9]   Robust Solutions of Optimization Problems Affected by Uncertain Probabilities [J].
Ben-Tal, Aharon ;
den Hertog, Dick ;
De Waegenaere, Anja ;
Melenberg, Bertrand ;
Rennen, Gijs .
MANAGEMENT SCIENCE, 2013, 59 (02) :341-357
[10]   Data-driven robust optimization [J].
Bertsimas, Dimitris ;
Gupta, Vishal ;
Kallus, Nathan .
MATHEMATICAL PROGRAMMING, 2018, 167 (02) :235-292