Suppression of Rayleigh-Taylor turbulence by time-periodic acceleration

被引:22
作者
Boffetta, G. [1 ,2 ]
Magnani, M. [1 ]
Musacchio, S. [3 ]
机构
[1] Univ Torino, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
[2] Univ Torino, INFN, Via P Giuria 1, I-10125 Turin, Italy
[3] Univ Cote Azur, CNRS, LJAD, F-06108 Nice, France
关键词
DYNAMIC STABILIZATION; INSTABILITY;
D O I
10.1103/PhysRevE.99.033110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of Rayleigh-Taylor turbulence convection in the presence of an alternating, time-periodic acceleration is studied by means of extensive direct numerical simulations of the Boussinesq equations. Within this framework, we discover a mechanism of relaminarization of turbulence: the alternating acceleration, which initially produces a growing turbulent mixing layer, at longer times suppresses turbulent fluctuation and drives the system toward an asymptotic stationary configuration. Dimensional arguments and linear stability theory are used to predict the width of the mixing layer in the asymptotic state as a function of the period of the acceleration.
引用
收藏
页数:5
相关论文
共 31 条
[1]   Review of theoretical modelling approaches of Rayleigh-Taylor instabilities and turbulent mixing [J].
Abarzhi, Snezhana I. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1916) :1809-1828
[2]   Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Grossmann, Siegfried ;
Lohse, Detlef .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :503-537
[3]  
Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
[4]   Numerical investigation of initial condition effects on Rayleigh-Taylor instability with acceleration reversals [J].
Aslangil, Denis ;
Banerjee, Arindam ;
Lawrie, Andrew G. W. .
PHYSICAL REVIEW E, 2016, 94 (05)
[5]   Shock ignition of thermonuclear fuel with high areal density [J].
Betti, R. ;
Zhou, C. D. ;
Anderson, K. S. ;
Perkins, L. J. ;
Theobald, W. ;
Solodov, A. A. .
PHYSICAL REVIEW LETTERS, 2007, 98 (15)
[6]   Statistics of mixing in three-dimensional Rayleigh-Taylor turbulence at low Atwood number and Prandtl number one [J].
Boffetta, G. ;
Mazzino, A. ;
Musacchio, S. ;
Vozella, L. .
PHYSICS OF FLUIDS, 2010, 22 (03) :1-8
[7]   Nonlinear Diffusion Model for Rayleigh-Taylor Mixing [J].
Boffetta, G. ;
De Lillo, F. ;
Musacchio, S. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[8]   Kolmogorov scaling and intermittency in Rayleigh-Taylor turbulence [J].
Boffetta, G. ;
Mazzino, A. ;
Musacchio, S. ;
Vozella, L. .
PHYSICAL REVIEW E, 2009, 79 (06)
[9]   Incompressible Rayleigh-Taylor Turbulence [J].
Boffetta, Guido ;
Mazzino, Andrea .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 49, 2017, 49 :119-143
[10]  
Boyd J., 2001, Chebyshev and Fourier Spectral Methods, V2nd