L-band SAR for estimating aboveground biomass of rubber plantation in Java']Java Island, Indonesia

被引:12
|
作者
Trisasongko, Bambang H. i [1 ,2 ]
Paull, David J. [1 ]
机构
[1] UNSW Canberra, Sch Phys Environm & Math Sci, Northcott Dr, Campbell, ACT 2600, Australia
[2] Bogor Agr Univ, Dept Soil Sci & Land Resource, Jalan Meranti, Darmaga Bogor, Indonesia
关键词
Aboveground biomass; extreme learning machine; PALSAR; plantation; polarimetric decomposition; rubber; POLARIMETRIC SAR; SCATTERING MODEL; TREE GROWTH; FARADAY-ROTATION; TROPICAL FOREST; LANDSAT DATA; CLASSIFIERS; BACKSCATTER; DECOMPOSITION; TEXTURE;
D O I
10.1080/10106049.2019.1573855
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This article discusses an experiment on the estimation of rubber tree biomass using L-band Synthetic Aperture Radar (SAR), to support recent efforts to include trees outside forest in global biomass and carbon accounting. We noted that date of acquisition is important, but certainly the selection of allometric equation serving as the reference data was paramount. Similarly, choosing a proper form of fully polarimetric data was instrumental, although this requires validation in different environmental settings. As expected, modern data mining approaches consistently delivered high accuracy. Extreme learning machine yielded the best estimate in terms of R-2 (0.98) and RMSE (1.88 Mg/ha); nonetheless, it also delivered a slight negative estimation. In this case, we found that a variant of random forest produced an outcome without any negative estimation. This research suggests that estimated biomass or carbon information from rubber plantations would be an invaluable candidate for the improvement of global biomass data.
引用
收藏
页码:1327 / 1342
页数:16
相关论文
共 35 条
  • [21] Feasibility Study of C- and L-band SAR Time Series Data in Tracking Indonesian Plantation and Natural Forest Cover Changes
    Dong, Xichao
    Quegan, Shaun
    Yumiko, Uryu
    Hu, Cheng
    Zeng, Tao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (07) : 3692 - 3699
  • [22] Airborne multi-temporal L-band polarimetric SAR data for biomass estimation in semi-arid forests
    Tanase, Mihai A.
    Panciera, Rocco
    Lowell, Kim
    Tian, Siyuan
    Hacker, Jorg M.
    Walker, Jeffrey P.
    REMOTE SENSING OF ENVIRONMENT, 2014, 145 : 93 - 104
  • [23] Retrieval of Tropical Forest Height and Above-Ground Biomass Using Airborne P- and L-Band SAR Tomography
    Liu, Xiao
    Zhang, Lu
    Yang, Xinwei
    Liao, Mingsheng
    Li, Wei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [24] Forest Aboveground Biomass Estimation in Subtropical Mountain Areas Based on Improved Water Cloud Model and PolSAR Decomposition Using L-Band PolSAR Data
    Zhang, Haibo
    Wang, Changcheng
    Zhu, Jianjun
    Fu, Haiqiang
    Han, Wentao
    Xie, Hongqun
    FORESTS, 2023, 14 (12):
  • [25] Forest Total and Component Above-Ground Biomass (AGB) Estimation through C- and L-band Polarimetric SAR Data
    Zeng, Peng
    Zhang, Wangfei
    Li, Yun
    Shi, Jianmin
    Wang, Zhanhui
    FORESTS, 2022, 13 (03):
  • [26] Combining L-band Synthetic Aperture Radar backscatter and TanDEM-X canopy height for forest aboveground biomass estimation
    Khati, Unmesh
    Singh, Gulab
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2022, 5
  • [27] Potential of soil moisture retrieval for tropical peatlands in Indonesia using ALOS-2 L-band full-polarimetric SAR data
    Izumi, Y.
    Widodo, J.
    Kausarian, H.
    Demirci, S.
    Takahashi, A.
    Razi, P.
    Nasucha, M.
    Yang, H.
    Tetuko, J. S. S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (15) : 5938 - 5956
  • [28] PREDICTION OF HEMI-BOREAL FOREST BIOMASS CHANGE USING ALOS-2 PALSAR-2 L-BAND SAR BACKSCATTER
    Huuva, Ivan
    Persson, Henrik J.
    Wallerman, Jorgen
    Ulander, Lars M. H.
    Fransson, Johan E. S.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3326 - 3329
  • [29] Synthesis of L-Band SAR and Forest Heights Derived from TanDEM-X DEM and 3 Digital Terrain Models for Biomass Mapping
    Hojo, Ai
    Takagi, Kentaro
    Avtar, Ram
    Tadono, Takeo
    Nakamura, Futoshi
    REMOTE SENSING, 2020, 12 (03)
  • [30] Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna
    Odipo, Victor Onyango
    Nickless, Alecia
    Berger, Christian
    Baade, Jussi
    Urbazaev, Mikhail
    Walther, Christian
    Schmullius, Christiane
    FORESTS, 2016, 7 (12):