FIXED POINTS AND CONTINUITY OF ALMOST CONTRACTIONS

被引:0
作者
Berinde, Vasile [1 ]
Pacurar, Madalina [2 ]
机构
[1] N Univ Baia Mare, Dept Math & Comp Sci, Baia Mare 430072, Romania
[2] Univ Babes Bolyai, Fac Econ & Bussiness Adm, Dept Stat Anal Forecast & Math, Cluj Napoca 400591, Romania
来源
FIXED POINT THEORY | 2008年 / 9卷 / 01期
关键词
fixed point; metric space; almost contraction; continuity in the fixed point;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Almost contractions form a class of generalized contractions that includes several contractive type mappings like usual contractions, Kannan mappings, Zamfirescu mappings etc. Since any usual contraction is continuous, while a Kannan mapping is not generally continuous but is continuous at the fixed point, the main aim of this paper is to study the continuity of both single and multi-valued almost contractions. The main results state that any almost contraction is continuous at its fixed point(s). This answers an open question raised in [Berinde, V., On the approximation of fixed points of weak contractive mappings Carpathian J. Math. 19 (2003), No. 1, 7-22].
引用
收藏
页码:23 / 34
页数:12
相关论文
共 32 条
[11]  
Chatterjea S. K., 1972, C. R. Acad. Bulg. Sci., V25, P727, DOI [10.1501/Commua10000000548https://doi.org/10.1007/BF01304884, DOI 10.1501/COMMUA10000000548HTTPS://DOI.ORG/10.1007/BF01304884]
[12]  
Ciric L.B., 1971, Mathmatica Balcanica, V1, P52
[13]  
Ciric L.B., 1971, Publ. Inst. Math., V12, P19
[14]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[15]  
Ciric LjB., 1998, B ACAD SERBE SCI ART, V23, P25
[16]  
Hicks T., 1992, INT J MATH SCI, V15, P15, DOI DOI 10.1155/S0161171292000024
[17]   CONSTRUCTION OF FIXED-POINTS OF A CLASS OF NONLINEAR MAPPINGS [J].
KANNAN, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 41 (02) :430-438
[18]  
KANNAN R, 1971, FUND MATH, V70, P169, DOI DOI 10.4064/FM-70-2-169-177
[19]  
Meszaros J., 1992, B CAL MATH SOC, V84, P167
[20]  
PACURAR M, 2 NEW GEN CLAS UNPUB