Particle swarm optimisation algorithm with forgetting character

被引:12
|
作者
Yuan, Dai-lin [1 ,2 ]
Chen, Qiu [1 ]
机构
[1] SW Jiaotong Univ, Sch Mech & Engn, Chengdu 610031, Peoples R China
[2] SW Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
关键词
particle swarm optimisation; PSO; forgetting character; function optimisation; CONVERGENCE;
D O I
10.1504/IJBIC.2010.030045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to improve the performance of particle swarm optimisation algorithm in the complicated function optimisation, a new improved measure was advanced. The new algorithm only memorised the individual information of finite steps in the iterations and utilised the average information of swarm. Due to the individuals forgetting the former best positions, the forgetting character was hold. The ability of exploration was improved because of using forgetting character and average information of swarm. The simulations of complicated function optimisation show that the new algorithm can find the global best solution more easily than the common particle swarm optimisation algorithm.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [41] New Particle Swarm Optimisation Algorithm with Henon Chaotic Map Structure
    Yan Tao
    Liu Fengxian
    Chen Bin
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (04) : 747 - 753
  • [42] Predictive functional control based on particle swarm optimisation algorithm for MIMO process with time delay
    Ghadiri, Hamid
    Khodadadi, Hamed
    Razavi, S. Ehsan
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2021, 39 (01) : 29 - 38
  • [43] Optimal AGC scheme design using hybrid particle swarm optimisation and gravitational search algorithm
    El Yakine Kouba N.
    Menaa M.
    Hasni M.
    Boudour M.
    International Journal of Power and Energy Conversion, 2019, 10 (02) : 241 - 263
  • [44] Random drift particle swarm optimisation algorithm for highly flexible protein-ligand docking
    Fu, Yi
    Chen, Zhiguo
    Sun, Jun
    JOURNAL OF THEORETICAL BIOLOGY, 2018, 457 : 180 - 189
  • [45] Application of particle swarm optimisation based on immune evolutionary algorithm for optimal operation of cascade reservoirs
    Chang, Jian-xia
    Wan, Fang
    Huang, Qiang
    Yuan, Wen-lin
    Wang, Yi-min
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2009, 8 (03) : 233 - 239
  • [46] The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity
    Murlidhar, Bhatawdekar Ramesh
    Sinha, Rabindra Kumar
    Mohamad, Edy Tonnizam
    Sonkar, Rajesh
    Khorami, Majid
    INTERNATIONAL JOURNAL OF HYDROMECHATRONICS, 2020, 3 (01) : 69 - 87
  • [47] Particle swarm optimisation for data warehouse logical design
    Derrar, Hacene
    Ahmed-Nacer, Mohamed
    Boussaid, Omar
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2012, 4 (04) : 249 - 257
  • [48] Particle swarm optimisation with multi-strategy learning
    Lin G.
    Sun J.
    International Journal of Wireless and Mobile Computing, 2020, 18 (01) : 22 - 30
  • [49] Location optimisation for antennas by asynchronous particle swarm optimisation
    Liao, Shu-Han
    Chiu, Chien-Ching
    Ho, Min-Hui
    IET COMMUNICATIONS, 2013, 7 (14) : 1510 - 1516
  • [50] Hybrid particle swarm optimisation with adaptively coordinated local searches for multimodal optimisation
    Xu, Gang
    Liu, Hao
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (03) : 266 - 277