Particle swarm optimisation algorithm with forgetting character

被引:12
|
作者
Yuan, Dai-lin [1 ,2 ]
Chen, Qiu [1 ]
机构
[1] SW Jiaotong Univ, Sch Mech & Engn, Chengdu 610031, Peoples R China
[2] SW Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
关键词
particle swarm optimisation; PSO; forgetting character; function optimisation; CONVERGENCE;
D O I
10.1504/IJBIC.2010.030045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to improve the performance of particle swarm optimisation algorithm in the complicated function optimisation, a new improved measure was advanced. The new algorithm only memorised the individual information of finite steps in the iterations and utilised the average information of swarm. Due to the individuals forgetting the former best positions, the forgetting character was hold. The ability of exploration was improved because of using forgetting character and average information of swarm. The simulations of complicated function optimisation show that the new algorithm can find the global best solution more easily than the common particle swarm optimisation algorithm.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [31] A novel particle swarm optimisation with hybrid strategies
    Chen, Rongfang
    Tang, Jun
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (03) : 278 - 286
  • [32] A meta optimisation analysis of particle swarm optimisation velocity update equations for watershed management learning
    Mason, Karl
    Duggan, Jim
    Howley, Enda
    APPLIED SOFT COMPUTING, 2018, 62 : 148 - 161
  • [33] On the influence of parameters in particle swarm optimisation algorithm for job shop scheduling
    Anil, B.
    Sivakumar, S.
    PROCEEDINGS OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON SYSTEMS, VOL 2: SYSTEMS THEORY AND APPLICATIONS, 2007, : 372 - +
  • [34] A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets
    Thida, Myo
    Eng, How-Lung
    Monekosso, Dorothy N.
    Remagnino, Paolo
    APPLIED SOFT COMPUTING, 2013, 13 (06) : 3106 - 3117
  • [35] A novel particle swarm algorithm for multi-objective optimisation problem
    Zhang, Jiande
    Huang, Chenrong
    Xu, Jinbao
    Lu, Jingui
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2013, 18 (04) : 380 - 386
  • [36] An improved diversity-guided particle swarm optimisation for numerical optimisation
    Wang, Wenjun
    Wang, Hui
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2014, 5 (01) : 16 - 26
  • [37] Distributed resource allocation optimisation algorithm based on particle swarm optimisation in wireless sensor network
    Hao, Xiaochen
    Yao, Ning
    Wang, Jiaojiao
    Wang, Liyuan
    IET COMMUNICATIONS, 2020, 14 (17) : 2990 - 2999
  • [38] Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm
    Llorente, Ignacio
    Luna, Ladislao
    AQUACULTURE INTERNATIONAL, 2014, 22 (06) : 1837 - 1849
  • [39] Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm
    Ignacio Llorente
    Ladislao Luna
    Aquaculture International, 2014, 22 : 1837 - 1849
  • [40] Optimization of suspension system using particle swarm optimisation and genetic algorithm
    Xiujuan L.
    Liu W.
    Shanhong L.
    International Journal of Vehicle Structures and Systems, 2019, 11 (03) : 297 - 300