Particle swarm optimisation algorithm with forgetting character

被引:12
|
作者
Yuan, Dai-lin [1 ,2 ]
Chen, Qiu [1 ]
机构
[1] SW Jiaotong Univ, Sch Mech & Engn, Chengdu 610031, Peoples R China
[2] SW Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
关键词
particle swarm optimisation; PSO; forgetting character; function optimisation; CONVERGENCE;
D O I
10.1504/IJBIC.2010.030045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to improve the performance of particle swarm optimisation algorithm in the complicated function optimisation, a new improved measure was advanced. The new algorithm only memorised the individual information of finite steps in the iterations and utilised the average information of swarm. Due to the individuals forgetting the former best positions, the forgetting character was hold. The ability of exploration was improved because of using forgetting character and average information of swarm. The simulations of complicated function optimisation show that the new algorithm can find the global best solution more easily than the common particle swarm optimisation algorithm.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [11] Multi-region particle swarm optimisation algorithm
    Fan J.-S.
    Fan, J.-S. (fjsszw2005@126.com), 2012, Inderscience Publishers (44) : 117 - 123
  • [13] Particle swarm optimisation algorithm for radio frequency identification network topology optimisation
    Zhang, Li
    Lu, Jin-gui
    Chen, Lei
    Zhang, Jian-de
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2011, 6 (1-2) : 16 - 23
  • [14] A hybrid particle swarm optimisation-genetic algorithm applied to grid scheduling
    Higashino, Wilson A.
    Capretz, Miriam A. M.
    de Toledo, M. Beatriz F.
    Bittencourt, Luiz F.
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2016, 7 (02) : 113 - 129
  • [15] An improved layered parallel particle swarm optimisation algorithm for the interchange traffic control
    He, Ruichun
    Ma, Changxi
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (05) : 434 - 441
  • [16] A modified particle swarm optimisation algorithm and its application in vehicle lightweight design
    Liu, Zhao
    Zhu, Ping
    Zhu, Chao
    Chen, Wei
    Yang, Ren-Jye
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2017, 73 (1-3) : 116 - 135
  • [17] Particle swarm optimisation: time for uniformisation
    Luis Fernandez-Martinez, Juan
    Garcia-Gonzalo, Esperanza
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2013, 4 (01) : 16 - 33
  • [18] A modified particle swarm optimisation algorithm and its application in vehicle lightweight design
    Liu Z.
    Zhu P.
    Zhu C.
    Chen W.
    Yang R.-J.
    Zhu, Ping (pzhu@sjtu.edu.cn), 2017, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (73) : 116 - 135
  • [19] A hybrid cooperative cuckoo search algorithm with particle swarm optimisation
    Wang, Lijin
    Zhong, Yiwen
    Yin, Yilong
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (01) : 18 - 29
  • [20] On the effect of particle update modes in particle swarm optimisation
    Dong, Nanjiang
    Wang, Rui
    Zhang, Tao
    Ou, Junwei
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2023, 21 (04) : 230 - 239