Phase transitions on fixed connected graphs and random graphs in the presence of noise

被引:7
|
作者
Liu, Jialing [1 ]
Yadav, Vikas [2 ]
Sehgal, Hullas [3 ]
Olson, Joshua M. [4 ]
Liu, Haifeng [5 ]
Elia, Nicola [6 ]
机构
[1] Motorola Inc, Libertyville, IL 60048 USA
[2] Garmin Int, Olathe, KS 66062 USA
[3] Univ Minnesota Twin Cities, Dept Elect Engn, Minneapolis, MN 55455 USA
[4] Raytheon Missile Syst, Tucson, AZ 85743 USA
[5] Calif Independent Syst Operator, Folsom, CA 95630 USA
[6] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
consensus; limited communication; networked dynamical systems; phase transitions; random graphs;
D O I
10.1109/TAC.2008.929382
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the phase transition behavior emerging from the interactions among multiple agents in the presence of noise. We propose a simple discrete-time model in which a group of non-mobile agents form either a fixed connected graph or a random graph process, and each agent, taking bipolar value either +1 or -1, updates its value according to its previous value and the noisy measurements of the values of the agents connected to it. We present proofs for the occurrence of the following phase transition behavior: At a noise level higher than some threshold, the system generates symmetric behavior (vapor or melt of magnetization) or disagreement; whereas at a noise level lower than the threshold, the system exhibits spontaneous symmetry breaking (solid or magnetization) or consensus. The threshold is found analytically. The phase transition occurs for any dimension. Finally, we demonstrate the phase transition behavior and all analytic results using simulations. This result may be found useful in the study of the collective behavior of complex systems under communication constraints.
引用
收藏
页码:1817 / 1825
页数:9
相关论文
共 50 条
  • [41] On handshakes in random graphs
    Zemmari, Akka
    INFORMATION PROCESSING LETTERS, 2008, 108 (03) : 119 - 123
  • [42] GRIDS IN RANDOM GRAPHS
    DELAVEGA, WF
    MANOUSSAKIS, Y
    RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (02) : 329 - 336
  • [43] On the hyperbolicity of random graphs
    Mitsche, Dieter
    Pralat, Pawel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (02)
  • [44] Logconcave Random Graphs
    Frieze, Alan
    Vempala, Santosh
    Vera, Juan
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 779 - +
  • [45] Swarming on Random Graphs
    James von Brecht
    Theodore Kolokolnikov
    Andrea L. Bertozzi
    Hui Sun
    Journal of Statistical Physics, 2013, 151 : 150 - 173
  • [46] Addressing Johnson Graphs, Complete Multipartite Graphs, Odd Cycles, and Random Graphs
    Alon, Noga
    Cioaba, Sebastian M.
    Gilbert, Brandon D.
    Koolen, Jack H.
    McKay, Brendan D.
    EXPERIMENTAL MATHEMATICS, 2021, 30 (03) : 372 - 382
  • [47] Forbidden subgraphs in connected graphs
    Ravelomanana, V
    Thimonier, LS
    THEORETICAL COMPUTER SCIENCE, 2004, 314 (1-2) : 121 - 171
  • [48] Chasing a Fast Robber on Planar Graphs and Random Graphs
    Alon, Noga
    Mehrabian, Abbas
    JOURNAL OF GRAPH THEORY, 2015, 78 (02) : 81 - 96
  • [49] UNIVERSALITY OF RANDOM GRAPHS FOR GRAPHS OF MAXIMUM DEGREE TWO
    Kim, Jeong Han
    Lee, Sang June
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1467 - 1478
  • [50] On the chromatic number of random regular graphs
    Coja-Oghlan, Amin
    Efthymiou, Charilaos
    Hetterich, Samuel
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 367 - 439