A Model for Productivity and Soil Fertility Prediction oriented to Ubiquitous Agriculture

被引:2
作者
Helfer, Gilson Augusto [1 ]
Barbosa, Jorge L., V [1 ]
Ben da Costa, Adilson [2 ]
Martini, Bruno G. [1 ]
dos Santos, Ronaldo [2 ]
机构
[1] Univ Vale Rio dos Sinos, Sao Leopoldo, RS, Brazil
[2] Univ Santa Cruz do Sul, Santa Cruz Do Sul, RS, Brazil
来源
WEBMEDIA 2019: PROCEEDINGS OF THE 25TH BRAZILLIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB | 2019年
关键词
Ubiquitous Computing; Context Awareness; Soil Fertility; Productivity; Precision Agriculture; SPECTROSCOPY; SYSTEM;
D O I
10.1145/3323503.3360637
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Currently the advances in precision agriculture technologies expand into the area of ubiquotous computing, with sophisticated sensors to measure soil composition and plant needs. The goal is to make farming more efficient and productive with the least impact on the environment. This paper proposes an architectural model for evaluation of soil fertility and productivity using contexts history based on chemical and physical aspects that characterize different types of soil over the time in a sustainable way. The prediction of productivity by wheat planted area used as physical aspects the climatic events between the years of 2001 and 2015. The results achieved a mean square error of calibration (RMSE) of 0.24 T/ha, mean square erros of cross-validation of 0.46 T/ha with a determination coefficient (R-2) of 0.8725. For the prediction of organic matter and clay, the best results obtained were a R-2 of 0.9584, RMSECV of 0.47% and R-2 of 0.9180, RMSECV of 7.64%, respectively.
引用
收藏
页码:489 / 492
页数:4
相关论文
共 13 条
  • [1] Costa Nídia Raquel, 2014, Pesqui. Agropecu. Trop., V44, P391, DOI 10.1590/S1983-40632014000400001
  • [2] de Souza Rodrigo Santos, 2014, P 20 BRAZ S MULT WEB, P223, DOI [10.1145/2664551.2664564, DOI 10.1145/2664551.2664564]
  • [3] Truong DV, 2018, PROCEEDINGS OF 2018 2ND INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SIGNAL PROCESSING, TELECOMMUNICATIONS & COMPUTING (SIGTELCOM 2018), P51, DOI 10.1109/SIGTELCOM.2018.8325804
  • [4] Ferreira M M. C., 2015, Quimiometria: conceitos, metodos e aplicacoes
  • [5] Furtini Neto AE, 2001, FERTILIDADE SOLO, V1a
  • [6] An IoT based smart irrigation management system using Machine learning and open source technologies
    Goap, Amarendra
    Sharma, Deepak
    Shukla, A. K.
    Krishna, C. Rama
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 155 : 41 - 49
  • [7] Soil carbon mapping using on-the-go near infrared spectroscopy, topography and aerial photographs
    Munoz, Juan D.
    Kravchenko, Alexandra
    [J]. GEODERMA, 2011, 166 (01) : 102 - 110
  • [8] On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning
    Nawar, S.
    Mouazen, A. M.
    [J]. SOIL & TILLAGE RESEARCH, 2019, 190 : 120 - 127
  • [9] A Multi-Temporal Context-aware System for Competences Management
    Rosa J.H.
    Barbosa J.L.V.
    Kich M.
    Brito L.
    [J]. International Journal of Artificial Intelligence in Education, 2015, 25 (4) : 455 - 492
  • [10] agroXML Enabling Standardized, Platform-Independent Internet Data Exchange in Farm Management Information Systems
    Schmitz, Mario
    Martini, Daniel
    Kunisch, Martin
    Moesinger, Hans-Juergen
    [J]. METADATA AND SEMANTICS, 2009, : 463 - +