A cluster centers initialization method for clustering categorical data

被引:62
|
作者
Bai, Liang [1 ,2 ]
Liang, Jiye [1 ]
Dang, Chuangyin [2 ]
Cao, Fuyuan [1 ]
机构
[1] Shanxi Univ, Sch Comp & Informat Technol, Minist Educ, Key Lab Computat Intelligence & Chinese Informat, Taiyuan 030006, Shanxi, Peoples R China
[2] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
The k-modes algorithm; Initialization method; Initial cluster centers; Density; Distance; GENETIC ALGORITHM;
D O I
10.1016/j.eswa.2012.01.131
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The leading partitional clustering technique, k-modes, is one of the most computationally efficient clustering methods for categorical data. However, the performance of the k-modes clustering algorithm which converges to numerous local minima strongly depends on initial cluster centers. Currently, most methods of initialization cluster centers are mainly for numerical data. Due to lack of geometry for the categorical data, these methods used in cluster centers initialization for numerical data are not applicable to categorical data. This paper proposes a novel initialization method for categorical data which is implemented to the k-modes algorithm. The method integrates the distance and the density together to select initial cluster centers and overcomes shortcomings of the existing initialization methods for categorical data. Experimental results illustrate the proposed initialization method is effective and can be applied to large data sets for its linear time complexity with respect to the number of data objects. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8022 / 8029
页数:8
相关论文
共 50 条
  • [1] An initialization method to simultaneously find initial cluster centers and the number of clusters for clustering categorical data
    Bai, Liang
    Liang, Jiye
    Dang, Chuangyin
    KNOWLEDGE-BASED SYSTEMS, 2011, 24 (06) : 785 - 795
  • [2] A new initialization method for categorical data clustering
    Cao, Fuyuan
    Liang, Jiye
    Bai, Liang
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (07) : 10223 - 10228
  • [3] A new initialization method for clustering categorical data
    Wu, Shu
    Jiang, Qingshan
    Huang, Joshua Zhexue
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2007, 4426 : 972 - +
  • [4] A Clustering Method for Categorical Ordinal Data
    Giordan, Marco
    Diana, Giancarlo
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (07) : 1315 - 1334
  • [5] An Improved Initialization Method for Clustering High-Dimensional Data
    Zhang, Yanping
    Jiang, Qingshan
    2010 2ND INTERNATIONAL WORKSHOP ON DATABASE TECHNOLOGY AND APPLICATIONS PROCEEDINGS (DBTA), 2010,
  • [6] Categorical Data Clustering: A Bibliometric Analysis and Taxonomy
    Cendana, Maya
    Kuo, Ren-Jieh
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2024, 6 (02): : 1009 - 1054
  • [7] An Effective Method Determining the Initial Cluster Centers for K-means for Clustering Gene Expression Data
    Tanir, Deniz
    Nuriyeva, Fidan
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 751 - 754
  • [8] Cluster center initialization algorithm for K-means clustering
    Khan, SS
    Ahmad, A
    PATTERN RECOGNITION LETTERS, 2004, 25 (11) : 1293 - 1302
  • [9] Improved Fuzzy Clustering Techniques for Categorical Data
    Saha, Indrajit
    Maulik, Ujjwal
    IAENG TRANSACTIONS ON ENGINEERING TECHNOLOGIES VOL 1, 2009, 1089 : 82 - +
  • [10] Improved Clustering for Categorical Data with Genetic Algorithm
    Sharma, Abha
    Thakur, R. S.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MICROELECTRONICS, COMPUTING & COMMUNICATION SYSTEMS, MCCS 2015, 2018, 453 : 67 - 76