Homogeneous hydrostatic flows with convex velocity profiles

被引:72
|
作者
Brenier, Y [1 ]
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris, France
关键词
D O I
10.1088/0951-7715/12/3/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Euler equations of an incompressible homogeneous fluid in a thin two-dimensional layer -infinity < x < +infinity, 0 < z < epsilon, with slip boundary conditions at z = 0, z = epsilon and periodic boundary conditions in x. After rescaling the vertical variable and letting epsilon go to zero, we get the following hydrostatic limit of the Euler equations partial derivative(l)u + u partial derivative(x)u + wa partial derivative(z)u + partial derivative(x)p = 0, (1) partial derivative(x)u + partial derivative(z)w = 0, partial derivative(z)p = 0, (2) supplemented by slip boundary conditions at z = 0 and z = 1 and periodic boundary conditions in x. We show that the corresponding initial-value problem is locally, but generally not globally, solvable in the class of smooth solutions with strictly convex horizontal velocity profiles, with constant slopes at z = 0 and z = 1.
引用
收藏
页码:495 / 512
页数:18
相关论文
共 50 条
  • [41] A STUDY ON VELOCITY PROFILES OF DEVELOPING LAMINAR OSCILLATORY FLOWS IN A SQUARE DUCT
    IGUCHI, M
    PARK, GM
    AKAO, F
    YAMAMOTO, F
    JSME INTERNATIONAL JOURNAL SERIES II-FLUIDS ENGINEERING HEAT TRANSFER POWER COMBUSTION THERMOPHYSICAL PROPERTIES, 1992, 35 (02): : 158 - 164
  • [42] Power-law index for velocity profiles in open channel flows
    Cheng, Nian-Sheng
    ADVANCES IN WATER RESOURCES, 2007, 30 (08) : 1775 - 1784
  • [43] Measurement of interstitial velocity of homogeneous bubbly flows at low to moderate void fraction
    Roig, V.
    de Tournemine, A. Larue
    JOURNAL OF FLUID MECHANICS, 2007, 572 : 87 - 110
  • [44] LAMINAR VELOCITY PROFILES IN DEVELOPING FLOWS USING A LASER DOPPLER TECHNIQUE
    BERMAN, NS
    SANTOS, VA
    AICHE JOURNAL, 1969, 15 (03) : 323 - +
  • [45] VELOCITY PROFILES IN STEADY AND UNSTEADY ROTATING FLOWS FOR A FINITE CYLINDRICAL GEOMETRY
    BIEN, F
    PENNER, SS
    PHYSICS OF FLUIDS, 1970, 13 (07) : 1665 - +
  • [46] Prediction of void fraction and velocity profiles of bubbly flows in vertical pipes
    Yang, X
    Thomas, NH
    CHEMICAL ENGINEERING COMMUNICATIONS, 1998, 163 : 145 - 176
  • [47] On the derivation of homogeneous hydrostatic equations
    Grenier, E
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (05): : 965 - 970
  • [48] CONVEX HOMOGENEOUS REGIONS
    VINBERG, EB
    DOKLADY AKADEMII NAUK SSSR, 1961, 141 (03): : 521 - &
  • [49] Steady-State Homogeneous Approximations of Vertical Velocity from EC Profiles
    Kurtzman, Daniel
    Netzer, Lior
    Weisbrod, Noam
    Graber, Ellen R.
    Ronen, Daniel
    GROUND WATER, 2011, 49 (02) : 275 - 279
  • [50] Simulating hydrostatic and non-hydrostatic oceanic flows
    Iskandarani, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 58 (10) : 1135 - 1146