LOCAL CLASSICAL SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES-SMOLUCHOWSKI EQUATIONS WITH VACUUM

被引:22
作者
Huang, Bingyuan [1 ,2 ]
Ding, Shijin [1 ]
Wen, Huanyao [3 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Hanshan Normal Univ, Coll Math & Stat, Chaozhou 521041, Peoples R China
[3] South China Univ Technol, Sch Math, Guangzhou 510641, Guangdong, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2016年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
Classical solution; compressible Navier-Stokes-Smoluchowski equations; vacuum; NONNEGATIVE INITIAL DENSITIES; LIQUID-CRYSTALS; HYDRODYNAMIC FLOW; FLUIDS;
D O I
10.3934/dcdss.2016072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Cauchy problem for compressible Navier-Stokes-Smoluchowski equations with vacuum in R-3. We prove both existence and uniqueness of the local strong solution, and then obtain a local classical solution by deriving the smoothing effect of the strong solution for t > 0.
引用
收藏
页码:1717 / 1752
页数:36
相关论文
共 34 条
[1]  
[Anonymous], ARXIV12073746
[2]  
Ballew J., 2014, MATH TOPICS FLUID PA
[3]   Viscous and inviscid models in fluid-particle interaction [J].
Ballew, Joshua ;
Trivisa, Konstantina .
COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2013, 13 (01) :45-78
[4]  
Ballew J, 2014, AIMS SER APPL MATH, V8, P301
[5]   Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system [J].
Ballew, Joshua ;
Trivisa, Konstantina .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 :1-19
[6]  
Baranger C., 2005, CEMRACS 2004 MATH AP, V14, P41
[7]   Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression [J].
Berres, S ;
Bürger, R ;
Karlsen, KH ;
Tory, EM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :41-80
[8]   On the dynamics of a fluid-particle interaction model: The bubbling regime [J].
Carrillo, J. A. ;
Karper, T. ;
Trivisa, K. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (08) :2778-2801
[9]   Stability and asymptotic analysis of a fluid-particle interaction model [J].
Carrillo, Jose A. ;
Goudon, Thierry .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (09) :1349-1379
[10]   Unique solvability of the initial boundary value problems for compressible viscous fluids [J].
Cho, Y ;
Choe, HJ ;
Kim, H .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02) :243-275