CD36 in Atherosclerosis: Pathophysiological Mechanisms and Therapeutic Implications

被引:77
作者
Tian, Kunming [1 ]
Xu, Yan [1 ]
Sahebkar, Amirhossein [2 ,3 ,4 ]
Xu, Suowen [5 ]
机构
[1] Zunyi Med Univ, Sch Publ Hlth, Dept Prevent Med, Zunyi, Guizhou, Peoples R China
[2] FDA, Halal Res Ctr IRI, Tehran, Iran
[3] Mashhad Univ Med Sci, Biotechnol Res Ctr, Pharmaceut Technol Inst, Mashhad 9177948564, Razavi Khorasan, Iran
[4] Mashhad Univ Med Sci, Neurogen Inflammat Res Ctr, Mashhad, Razavi Khorasan, Iran
[5] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Endocrinol & Metab, Div Life Sci & Med, Hefei 230037, Peoples R China
关键词
CD36; Atherosclerosis; Macrophage; Endothelial cell; Oxidized LDL; Lipid metabolism; FOAM CELL-FORMATION; SCAVENGER RECEPTOR CD36; SMOOTH-MUSCLE-CELLS; OXIDIZED LDL; LIPID-ACCUMULATION; CHOLESTEROL EFFLUX; OX-LDL; EXPRESSION; MACROPHAGES; INHIBITION;
D O I
10.1007/s11883-020-00870-8
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Purpose of ReviewAtherosclerosis is a chronic disease characterized by lipid retention and inflammation in the artery wall. The retention and oxidation of low-density lipoprotein (LDL) in sub-endothelial space play a critical role in atherosclerotic plaque formation and destabilization. Oxidized LDL (ox-LDL) and other modified LDL particles are avidly taken up by endothelial cells, smooth muscle cells, and macrophages mainly through several scavenger receptors, including CD36 which is a class B scavenger receptor and membrane glycoprotein.Recent FindingsAnimal studies performed on CD36-deficient mice suggest that deficiency of CD36 prevents the development of atherosclerosis, though with some debate. CD36 serves as a signaling hub protein at the crossroad of inflammation, lipid metabolism, and fatty acid metabolism. In addition, the level of soluble CD36 (unattached to cells) in the circulating blood was elevated in patients with atherosclerosis and other metabolic disorders.SummaryWe performed a state-of-the-art review on the structure, ligands, functions, and regulation of CD36 in the context of atherosclerosis by focusing on the pathological role of CD36 in the dysfunction of endothelial cells, smooth muscle cells, monocytes/macrophages, and platelets. Finally, we highlight therapeutic possibilities to target CD36 expression/activity in atherosclerosis.
引用
收藏
页数:10
相关论文
共 90 条
  • [1] Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis
    Ackers, Ian
    Szymanski, Candice
    Duckett, K. Jordan
    Consitt, Leslie A.
    Silver, Mitchell J.
    Malgor, Ramiro
    [J]. CARDIOVASCULAR PATHOLOGY, 2018, 34 : 1 - 8
  • [2] Signalling pathways regulating galactosaminoglycan synthesis and structure in vascular smooth muscle: Implications for lipoprotein binding and atherosclerosis
    Afroz, Rizwana
    Cao, Yingnan
    Rostam, Muhamad Ashraf
    Ta, Hang
    Xu, Suowen
    Zheng, Wenhua
    Osman, Narin
    Kamato, Danielle
    Little, Peter J.
    [J]. PHARMACOLOGY & THERAPEUTICS, 2018, 187 : 88 - 97
  • [3] Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants
    Allum, Fiona
    Shao, Xiaojian
    Guenard, Frederic
    Simon, Marie-Michelle
    Busche, Stephan
    Caron, Maxime
    Lambourne, John
    Lessard, Julie
    Tandre, Karolina
    Hedman, Asa K.
    Kwan, Tony
    Ge, Bing
    Ronnblom, Lars
    McCarthy, Mark I.
    Deloukas, Panos
    Richmond, Todd
    Burgess, Daniel
    Spector, Timothy D.
    Tchernof, Andre
    Marceau, Simon
    Lathrop, Mark
    Vohl, Marie-Claude
    Pastinen, Tomi
    Grundberg, Elin
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [4] Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats
    Aragon-Herrera, Alana
    Feijoo-Bandin, Sandra
    Santiago, Manuel Otero
    Barral, Luis
    Campos-Toimil, Manuel
    Gil-Longo, Jose
    Pereira, Thiago M. Costa
    Garcia-Caballero, Tomas
    Rodriguez-Segade, Santiago
    Rodriguez, Javier
    Tarazon, Estefania
    Rosello-Lleti, Esther
    Portoles, Manuel
    Gualillo, Oreste
    Ramon Gonzalez-Juanatey, Jose
    Lago, Francisca
    [J]. BIOCHEMICAL PHARMACOLOGY, 2019, 170
  • [5] Cholesterol efflux alterations in adolescent obesity: role of adipose-derived extracellular vesical microRNAs
    Barberio, Matthew D.
    Kasselman, Lora J.
    Playford, Martin P.
    Epstein, Samuel B.
    Renna, Heather A.
    Goldberg, Madeleine
    DeLeon, Joshua
    Voloshyna, Iryna
    Barlev, Ashley
    Salama, Michael
    Ferrante, Sarah C.
    Nadler, Evan P.
    Mehta, Nehal
    Reiss, Allison B.
    Freishtat, Robert J.
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2019, 17 (1)
  • [6] Oxidized Low-Density Lipoprotein Induces Long-Term Proinflammatory Cytokine Production and Foam Cell Formation via Epigenetic Reprogramming of Monocytes
    Bekkering, Siroon
    Quintin, Jessica
    Joosten, Leo A. B.
    van der Meer, Jos W. M.
    Netea, Mihai G.
    Riksen, Niels P.
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2014, 34 (08) : 1731 - +
  • [7] A high-fat diet impairs mitochondrial biogenesis, mitochondrial dynamics, and the respiratory chain complex in rat myocardial tissues
    Chen, Dan
    Li, Xia
    Zhang, LiTing
    Zhu, Mei
    Gao, Ling
    [J]. JOURNAL OF CELLULAR BIOCHEMISTRY, 2018, 119 (11) : 9602
  • [8] Mitochondrial Metabolic Reprogramming by CD36 Signaling Drives Macrophage Inflammatory Responses
    Chen, Yiliang
    Yang, Moua
    Huang, Wenxin
    Chen, Wenjing
    Zhao, Yiqiong
    Schulte, Marie L.
    Volberding, Peter
    Gerbec, Zachary
    Zimmermann, Michael T.
    Zeighami, Atefeh
    Demos, Wendy
    Zhang, Jue
    Knaack, Darcy A.
    Smith, Brian C.
    Cui, Weiguo
    Malarkannan, Subramaniam
    Sodhi, Komal
    Shapiro, Joseph I.
    Xie, Zijian
    Sahoo, Daisy
    Silverstein, Roy L.
    [J]. CIRCULATION RESEARCH, 2019, 125 (12) : 1087 - 1102
  • [9] Trichostatin A exacerbates atherosclerosis in low density lipoprotein receptor-deficient mice
    Choi, JH
    Nam, KH
    Kim, J
    Baek, MW
    Park, JE
    Park, HY
    Kwon, HJ
    Kwon, OS
    Kim, DY
    Oh, GT
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2005, 25 (11) : 2404 - 2409
  • [10] Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells
    Chu, Ling-Yun
    Ramakrishnan, Devi Prasadh
    Silverstein, Roy L.
    [J]. BLOOD, 2013, 122 (10) : 1822 - 1832