Comprehensive Assessment for the Impacts of S/IVOC Emissions from Mobile Sources on SOA Formation in China

被引:10
作者
Zhao, Junchao [1 ]
Lv, Zhaofeng [1 ]
Qi, Lijuan [2 ]
Zhao, Bin [1 ]
Deng, Fanyuan [1 ]
Chang, Xing [1 ]
Wang, Xiaotong [1 ]
Luo, Zhenyu [1 ]
Xu, Hailian [1 ]
Ying, Qi [3 ]
Wang, Shuxiao [1 ]
He, Kebin [1 ]
Liu, Huan [1 ]
机构
[1] Tsinghua Univ, State Key Joint Lab ESPC, State Environm Protect Key Lab Sources & Control A, Int Joint Lab Low Carbon Clean Energy Innovat,Sch, Beijing 100084, Peoples R China
[2] Qinghai Univ, Coll Ecoenvironm Engn, State Key Lab Plateau Ecol & Agr, Xining 810016, Peoples R China
[3] Texas A&M Univ, Zachry Dept Civil & Environm Engn, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
mobile sources; S; IVOCs; SOA formation; SOA schemes; numerical model; SECONDARY ORGANIC AEROSOL; STATISTICAL OXIDATION MODEL; CHEMICAL-TRANSPORT MODEL; COMPOUND EMISSIONS; GASOLINE VEHICLES; INTERMEDIATE; DIESEL; SEMIVOLATILE; AIR; SIMULATIONS;
D O I
10.1021/acs.est.2c07265
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Semivolatile/intermediate-volatility organic compounds (S/IVOCs) from mobile sources are essential SOA contributors. However, few studies have comprehensively evaluated the SOA contributions of S/IVOCs by simultaneously comparing different parameterization schemes. This study used three SOA schemes in the CMAQ model with a measurement based emission inventory to quantify the mobile source S/IVOCinduced SOA (MS-SI-SOA) for 2018 in China. Among different SOA schemes, SOA predicted by the 2D-VBS scheme was in the best agreement with observations, but there were still large deviations in a few regions. Three SOA schemes showed the peak value of annual average MS-SI-SOA was up to 0.6 +/- 0.3 mu g/m3. High concentrations of MS-SI-SOA were detected in autumn, while the notable relative contribution of MS-SI-SOA to total SOA was predicted in the coastal areas in summer, with a regional average contribution up to 20 +/- 10% in Shanghai. MS-SI-SOA concentrations varied by up to 2 times among three SOA schemes, mainly due to the discrepancy in SOA precursor emissions and chemical reactions, suggesting that the differences between SOA schemes should also be considered in modeling studies. These findings identify the hotspot areas and periods for MS-SI-SOA, highlighting the importance of S/IVOC emission control in the future upgrading of emission standards.
引用
收藏
页码:16695 / 16706
页数:12
相关论文
共 58 条
[1]   Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 3: Assessing the influence of semi-volatile and intermediate-volatility organic compounds and NOx [J].
Akherati, Ali ;
Cappa, Christopher D. ;
Kleeman, Michael J. ;
Docherty, Kenneth S. ;
Jimenez, Jose L. ;
Griffith, Stephen M. ;
Dusanter, Sebastien ;
Stevens, Philip S. ;
Jathar, Shantanu H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (07) :4561-4594
[2]   PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models [J].
Boylan, James W. ;
Russell, Armistead G. .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (26) :4946-4959
[3]  
Buchholz R., 2019, CESM2 1 CAM CHEM INS
[4]   Full-volatility emission framework corrects missing and underestimated secondary organic aerosol sources [J].
Chang, Xing ;
Zhao, Bin ;
Zheng, Haotian ;
Wang, Shuxia ;
Cai, Siyi ;
Guo, Fengqiao ;
Gui, Ping ;
Huang, Guanghan ;
Wu, Di ;
Han, Licong ;
Xing, Jia ;
Man, Hanyang ;
Hu, Ruolan ;
Liang, Chengrui ;
Xu, Qingcheng ;
Qiu, Xionghui ;
Ding, Dian ;
Liu, Kaiyun ;
Han, Rui ;
Robinson, Allen L. ;
Donahue, Neil M. .
ONE EARTH, 2022, 5 (04) :403-+
[5]   Modelling secondary organic aerosols in China [J].
Chen, Qi ;
Fu, Tzung-May ;
Hu, Jianlin ;
Ying, Qi ;
Zhang, Lin .
NATIONAL SCIENCE REVIEW, 2017, 4 (06) :806-809
[6]   A big data approach to improving the vehicle emission inventory in China [J].
Deng, Fanyuan ;
Lv, Zhaofeng ;
Qi, Lijuan ;
Wang, Xiaotong ;
Shi, Mengshuang ;
Liu, Huan .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   A two-dimensional volatility basis set - Part 2: Diagnostics of organic-aerosol evolution [J].
Donahue, N. M. ;
Kroll, J. H. ;
Pandis, S. N. ;
Robinson, A. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (02) :615-634
[8]   Detailed Speciation of Intermediate Volatility and Semivolatile Organic Compound Emissions from Gasoline Vehicles: Effects of Cold-Starts and Implications for Secondary Organic Aerosol Formation [J].
Drozd, Greg T. ;
Zhao, Yunliang ;
Saliba, Georges ;
Frodin, Bruce ;
Maddox, Christine ;
Chang, M. -C. Oliver ;
Maldonado, Hector ;
Sardar, Satya ;
Weber, Robert Jay ;
Robinson, Allen L. ;
Goldstein, Allen H. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (03) :1706-1714
[9]   Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions [J].
Gentner, Drew R. ;
Jathar, Shantanu H. ;
Gordon, Timothy D. ;
Bahreini, Roya ;
Day, Douglas A. ;
El Haddad, Imad ;
Hayes, Patrick L. ;
Pieber, Simone M. ;
Platt, Stephen M. ;
de Gouw, Joost ;
Goldstein, Allen H. ;
Harley, Robert A. ;
Jimenez, Jose L. ;
Prevot, Andre S. H. ;
Robinson, Allen L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (03) :1074-1093
[10]   Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles [J].
Gordon, T. D. ;
Presto, A. A. ;
May, A. A. ;
Nguyen, N. T. ;
Lipsky, E. M. ;
Donahue, N. M. ;
Gutierrez, A. ;
Zhang, M. ;
Maddox, C. ;
Rieger, P. ;
Chattopadhyay, S. ;
Maldonado, H. ;
Maricq, M. M. ;
Robinson, A. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (09) :4661-4678