A diffusion-approximation theorem in Navier-Stokes equation

被引:3
作者
Clouet, JF [1 ]
机构
[1] ECOLE POLYTECH,CTR MATH APPL,F-91128 PALAISEAU,FRANCE
关键词
D O I
10.1080/07362999608809424
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A convergence in distribution theorem is proved for the solution of the stochastic Navier-Stokes equation with multiplicative noise in dimension 2 or 3 when the noise is a mixing process. This result generalizes previous diffusion-approximation theorems to a non-linear case.
引用
收藏
页码:33 / 46
页数:14
相关论文
共 9 条
[1]   ASYMPTOTIC ANALYSIS OF PDES WITH WIDEBAND NOISE DISTURBANCES, AND EXPANSION OF THE MOMENTS [J].
BOUC, R ;
PARDOUX, E .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1984, 2 (04) :369-422
[2]   STOCHASTIC NAVIER-STOKES EQUATIONS WITH MULTIPLICATIVE NOISE [J].
BRZEZNIAK, Z ;
CAPINSKI, M ;
FLANDOLI, F .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1992, 10 (05) :523-532
[3]  
BRZEZNIAK Z, 1991, MATH MOD METH APPL S, V1, P41, DOI DOI 10.1142/S0218202591000046
[4]  
FUJITAYASHIMA H, 1992, EQUATIONS NAVIERSTOK
[5]  
Kushner H. J., 1985, Stochastics, V14, P115, DOI 10.1080/17442508508833335
[6]  
Kushner H. J., 1984, Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory
[7]  
LIONS JL, 1968, QUELQUES EXEMPLES RE
[8]  
Metivier M., 1988, STOCHASTIC PARTIAL D
[9]  
PARDOUX E, 1985, STOCHASTIC SPACE TIM