TOPOGRAPHIC CORRECTION USING BRIGHTNESS NORMALIZATION APPROACH FROM HYPERSPECTRAL REMOTE SENSING IMAGES

被引:0
|
作者
Pal, M. K. [1 ]
Porwal, A. [1 ]
机构
[1] Indian Inst Technol, Ctr Studies Resources Engn, Bombay 400076, Maharashtra, India
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
remote sensing; hyperspectral; Hyperion; topographic correction; brightness normalization; SATELLITE IMAGERY; VEGETATION;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we have developed a radiometric brightness normalization based approach by using digital elevation data and local statistics for topographic correction from hyperspectral remote sensing images. Previous approaches for calibration and removal of topographic illumination effect from Hyperspectral and other remotely sensed datasets are reviewed and tested along with the proposed algorithm on a Hyperion image of a study area in Western India. The results indicate that the proposed algorithm is effective in topographic correction.
引用
收藏
页码:5658 / 5661
页数:4
相关论文
共 50 条
  • [41] Recreating Brightness From Remote Sensing Shadow Appearance
    Wang, Qi
    Chi, Kaichen
    Jing, Wei
    Yuan, Yuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 11
  • [42] USING HYPERSPECTRAL REMOTE SENSING DATA FOR RETRIEVING CANOPY WATER CONTENT
    Clevers, J. G. P. W.
    Kooistra, L.
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 247 - 250
  • [43] Soil fertility characterization inagricultural fields using hyperspectral remote sensing
    Bajwa, SG
    Tian, LF
    TRANSACTIONS OF THE ASAE, 2005, 48 (06): : 2399 - 2406
  • [44] Semi-supervised classification method for hyperspectral remote sensing images
    Gomez-Chova, L
    Calpe, J
    Camps-Valls, G
    Martín, JD
    Soria, E
    Vila, J
    Alonso-Chorda, L
    Moreno, J
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1776 - 1778
  • [45] Extreme learning machines for soybean classification in remote sensing hyperspectral images
    Moreno, Ramon
    Corona, Francesco
    Lendasse, Amaury
    Grana, Manuel
    Galvao, Lenio S.
    NEUROCOMPUTING, 2014, 128 : 207 - 216
  • [46] Hyperspectral Remote Sensing Images Classification Method Based on Learned Dictionary
    Li, Min
    Shen, Jun
    Jiang, Lianjun
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND COMPUTER APPLICATIONS (ICSA 2013), 2013, 92 : 357 - 362
  • [47] A new search algorithm for feature selection in hyperspectral remote sensing images
    Serpico, SB
    Bruzzone, L
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07): : 1360 - 1367
  • [48] Research on Multiband Packet Fusion Algorithm for Hyperspectral Remote Sensing Images
    Zhao, Cai
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2019, 23 (01) : 153 - 157
  • [49] Coastline target detection based on UAV hyperspectral remote sensing images
    Zhao, Song
    Lv, Yali
    Zhao, Xiaobin
    Wang, Jiayao
    Li, Wei
    Lv, Ming
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [50] A fast mosaic approach for remote sensing images
    Cheng, Yuanhang
    Xue, Dingyu
    Cheng, Yuanhang
    Li, Yanping
    2007 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS I-V, CONFERENCE PROCEEDINGS, 2007, : 2009 - +