Poincare sphere of electromagnetic spatial coherence

被引:10
作者
Laatikainen, Jyrki [1 ]
Friberg, Ari T. [1 ]
Korotkova, Olga [2 ]
Setala, Tero [1 ]
机构
[1] Univ Eastern Finland, Inst Photon, POB 111, FI-80101 Joensuu, Finland
[2] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA
基金
芬兰科学院;
关键词
STOKES PARAMETERS; REPRESENTATION; FREQUENCY; FIELDS; PHASE; TIME;
D O I
10.1364/OL.422917
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a Poincare sphere construction for geometrical representation of the state of two-point spatial coherence in random electromagnetic (vectorial) beams. To this end, a novel descriptor of coherence is invoked, which shares some important mathematical properties with the polarization matrix and spans a new type of Stokes parameter space. The coherence Poincare sphere emerges as a geometric interpretation of this novel formalism, which is developed for uniformly and nonuniformly fully polarized beams. The construction is extended to partially polarized beams as well and is demonstrated with a field having separable spatial coherence and polarization characteristics. At a single point, the coherence Poincare sphere reduces to the conventional polarization Poincare sphere for any state of partial polarization. (C) 2021 Optical Society of America
引用
收藏
页码:2143 / 2146
页数:4
相关论文
共 32 条
  • [1] [Anonymous], 2010, QUANTUM COMPUTATION
  • [2] Poincare sphere representation of the fixed-polarizer rotating-retarder optical system
    Azzam, RMA
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (11): : 2105 - 2107
  • [3] Full Poincare beams
    Beckley, Amber M.
    Brown, Thomas G.
    Alonso, Miguel A.
    [J]. OPTICS EXPRESS, 2010, 18 (10): : 10777 - 10785
  • [4] Classical Coherence of Blackbody Radiation
    Blomstedt, Kasimir
    Friberg, Ari T.
    Setala, Tero
    [J]. PROGRESS IN OPTICS, VOL 62, 2017, 62 : 293 - 346
  • [5] Born M., 1997, Principles of optics, Vsixth
  • [6] Brosseau C., 1998, FUNDAMENTALS POLARIZ
  • [7] Wigner representation and geometric transformations of optical orbital angular momentum spatial modes
    Calvo, GF
    [J]. OPTICS LETTERS, 2005, 30 (10) : 1207 - 1209
  • [8] Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond
    Cohen, Eliahu
    Larocque, Hugo
    Bouchard, Frederic
    Nejadsattari, Farshad
    Gefen, Yuval
    Karimi, Ebrahim
    [J]. NATURE REVIEWS PHYSICS, 2019, 1 (07) : 437 - 449
  • [9] Electromagnetic theory of optical coherence [Invited]
    Friberg, Ari T.
    Setala, Tero
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (12) : 2431 - 2442
  • [10] Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum
    Galvez, EJ
    Crawford, PR
    Sztul, HI
    Pysher, MJ
    Haglin, PJ
    Williams, RE
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (20) : 4