Collagen-Elastin and Collagen-Glycosaminoglycan Scaffolds Promote Distinct Patterns of Matrix Maturation and Axial Vascularization in Arteriovenous Loop-Based Soft Tissue Flaps

被引:25
|
作者
Schmidt, Volker J. [1 ]
Wietbrock, Johanna O. [1 ]
Leibig, Nico [1 ]
Gloe, Torsten [2 ]
Henn, Dominic [1 ]
Hernekamp, J. Frederik [1 ]
Harhaus, Leila [1 ]
Kneser, Ulrich [1 ]
机构
[1] Heidelberg Univ, Dept Hand Plast & Reconstruct Surg, BG Trauma Ctr Ludwigshafen, Heidelberg, Germany
[2] Heidelberg Univ, Ctr Biomed & Med Technol Mannheim, Cardiovasc Physiol, Heidelberg, Germany
关键词
AV loop; acellular dermal matrix; tissue engineering; microsurgery; angiogenesis; IN-VIVO; ANGIOGENESIS; DEFECTS; MODEL; VEGF; SKIN; GENERATION; CONSTRUCT; COVERAGE; CHAMBER;
D O I
10.1097/SAP.0000000000001096
中图分类号
R61 [外科手术学];
学科分类号
摘要
Introduction: Autologous free flaps are the criterion standard for reconstructions of complex soft tissue defects; however, they are limited by donor-site morbidities. The arteriovenous (AV) loop model enables the generation of soft tissue constructs based on acellular dermal matrices with a functional microvasculature and minimal donor site morbidity. The ideal scaffold for AV loop-based tissue engineering has not been determined. Methods: AV loops were placed into subcutaneous isolation chambers filled with either a collagen-elastin scaffold or a collagen-glycosaminoglycan scaffold in the thighs of rats. Matrix elasticity, neoangiogenesis, cell migration, and proliferation were compared after 14 and 28 days. Results: Mean vessel count and area had increased in both matrices at 28 compared with 14 days. Collagen-elastin matrices showed a higher mean vessel count and area compared with collagen-glycosaminoglycan matrices at 14 days. At 28 days, a more homogeneous vascular network and higher cell counts were observed in collagen-elastin matrices. Collagen-glycosaminoglycan matrices, however, exhibited less volume loss at day 28. Conclusions: Collagen-based scaffolds are suitable for soft tissue engineering in conjunction with the AV loop technique. These scaffolds exhibit distinct patterns of angiogenesis, cell migration, and proliferation and may in the future serve as the basis of tissue-engineered free flaps as an individualized treatment concept for critical wounds.
引用
收藏
页码:92 / 100
页数:9
相关论文
empty
未找到相关数据